1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RoseWind [281]
3 years ago
6

Describe, using the relevant physics, how moving a magnet near a [ 1 2 ] solenoid induces a voltage across it. How does the spee

d of the magnet a ect the voltage? What about turning the magnet upside down?
Physics
1 answer:
Svetllana [295]3 years ago
5 0

Answer:

Explanation:

Moving a magnet might cause a change in the magnetic field going through the solenoid. Whether or not it will change depends on the movement.

According to Faraday's law of induction a voltage is induced in a coil by a change in the magnetic flux. Magnetic flux is defined as the dot product of the magnetic field (a vector field) by the area enclosed by a loop of the coil.

\Phi B = -\int{B} \, dA

The voltage is induced by the variation of the magnetic flux:

\epsilon = -N * \frac{d \Phi B}{dt}

Where

ε: electromotive fore

N: number of turns in the coil

ΦB: magnetic flux

Moving the magnet faster would increase the rare of change of the magnetic flux, resulting in higher induced voltage.

Turning the magnet upside down would invert the direction of the magnetic field, reversing the voltage induced.

You might be interested in
You are performing an experiment that requires the highest possible energy density in the interior of a very long solenoid. Whic
Alinara [238K]

Answer:

b. increasing the number of turns per unit length on the solenoid

e. increasing the current in the solenoid

Explanation:

As we know that energy density depends on the strength of the magnetic field. The magnetic field strength depends on the no of turns of the solenoid and the current passing through it. The greater the number of turns per unit length, greater the current passing through it, more stronger the magnetic field is. As

B = μ₀nI

n = no of turns

I = current through the wire

So the right options are

b. increasing the number of turns per unit length on the solenoid

e. increasing the current in the solenoid

5 0
3 years ago
A rock falls off a cliff. How fast will it be going after falling for 4.33 seconds?
bixtya [17]

Answer:42.43m/s

Explanation:According to vf=vi+at, we  can calculate it since v0 equals to 0. vf=0+9.8m/s^2*4.33s= 42.434m/s

4 0
1 year ago
I). Mechanical energy is the sum of potential energy and kinetic energy in an object that is used to do work.
Dmitry_Shevchenko [17]

Answer:

false statement : b )  For the motion of a cart on an incline plane having a coefficient of kinetic friction of 0.5, the magnitude of the change in kinetic energy equals the magnitude of the change in gravitational potential energy

Explanation:

mechanical energy = potential energy + kinetic energy = constant

differentiating both side

Δ potential energy + Δ kinetic energy = 0

Δ potential energy = -  Δ kinetic energy

first statement is true.

Friction is a non conservative force so inter-conversion of potential and kinetic energy is not possible in that case. In case of second  option,  the correct relation is as follows

change in gravitational potential energy = change in kinetic energy + work done against friction .

So given 2 nd  option is incorrect.

In case of no change in gravitational energy , work done is equal to

change in kinetic energy.

4 0
3 years ago
Joe and Max shake hands and say goodbye. Joe walks east 0.50 km to a coffee shop, and Max flags a cab and rides north 3.45 km to
timama [110]

Answer:

3.486 km

Explanation:

Suppose Joe and Max's directions are perfectly perpendicular (east vs north). We can calculate their distance at the destinations using Pythagorean theorem:

s = \sqrt{J^2 + M^2}

where J = 0.5 km and M= 3.45 km are the distances between Joe and Max to their original parting point, respectively. s is the distance between them.

s = \sqrt{0.5^2 + 3.45^2} = \sqrt{12.1525} = 3.486 km

8 0
3 years ago
How to determine the position of the center of mass.
Rus_ich [418]

Answer:

The center of mass can be calculated by taking the masses you are trying to find the center of mass between and multiplying them by their positions

4 0
3 years ago
Other questions:
  • Modern psychologists have proposed the facial feedback hypothesis based on the theories of
    5·2 answers
  • Jamal combined baking soda and vinegar but he is having trouble determining if what he observed is a chemical reaction or a phys
    15·2 answers
  • A gymnast's backflip is considered more difficult to do in the layout (straight body) position than in the tucked position. Why?
    9·1 answer
  • When air is blown across the top of an open
    14·1 answer
  • Hydrogen peroxide is sold commercially as an aqueous solution in brown bottles to protect it from light. Calculate the longest w
    6·2 answers
  • A rocket generates a net force (F) of 2,050,000 newtons, and the rocket’s mass (m) is 40,000 kilograms. Use the formula F = ma t
    8·2 answers
  • Which of the following is the correct SI unit to use in measuring the mass of a boulder
    5·2 answers
  • a) If a proton moved from a location with a 5.0 V potential to a location with 7.5 V potential, would its potential energy incre
    13·1 answer
  • 5.00 kg of liquid water is heated to 100.0 °C in a closed system. At this temperature, the density of liquid water is 958 kg/m3
    12·1 answer
  • A force of 3,000 N is applied to a car, resulting in acceleration. In 10 s, the car increases its velocity from 0 m/s to 30 m/s.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!