Answer:
1. A1, B2, C3
2. 47.1°
Explanation:
Sum of forces in the x direction:
∑Fₓ = ma
f − Fᵥᵥ = 0
f = Fᵥᵥ
Sum of forces in the y direction:
∑Fᵧ = ma
N − W = 0
N = W
Sum of moments about the base of the ladder:
∑τ = Iα
Fᵥᵥ h − W (b/2) = 0
Fᵥᵥ h = ½ W b
Fᵥᵥ (l sin θ) = ½ W (l cos θ)
l Fᵥᵥ sin θ = ½ l W cos θ
The correct set of equations is A1, B2, C3.
At the smallest angle θ, f = Nμ. Substituting into the first equation, we get:
Nμ = Fᵥᵥ
Substituting the second equation into this equation, we get:
Wμ = Fᵥᵥ
Substituting this into the third equation, we get:
l (Wμ) sin θ = ½ l W cos θ
μ sin θ = ½ cos θ
tan θ = 1 / (2μ)
θ = atan(1 / (2μ))
θ = atan(1 / (2 × 0.464))
θ ≈ 47.1°
Ans: R = Ball Travelled = 92.15 meters.
Explanation:
First we need to derive that formula for the "range" in order to know how far the ball traveled before hitting the ground.
Along x-axis, equation would be:

Since there is no acceleration along x-direction; therefore,

Since

and

=0; therefore above equation becomes,

--- (A)
Now we need to find "t", and the time is not given. In order to do so, we shall use the y-direction motion equation. Before hitting the ground y ≈ 0 and a = -g; therefore,
=>

=>

Since

; therefore above equation becomes,

Put the value of t in equation (A):
(A) =>

Where x = Range = R, and

; therefore above equation becomes:
=>

Now, as:

and

°
and g = 9.8 m/(s^2)
Hence,
Ans: R = 92.15 meters.-i
They require a medium to travel through
Answer:
<em>The magnitude of the force is 10 N</em>
Explanation:
<u>Coulomb's Law</u>
The electrostatic force between two charged objects is directly proportional to the product of their charges and inversely proportional to the square of the distance between the two objects.
Written as a formula:

Where:

q1, q2 = the objects' charge
d= The distance between the objects
We have two identical charges of q1=q2=1 c separated by d=30000 m, thus the magnitude of the force is:


F = 10 N
The magnitude of the force is 10 N
Answer:C..net work done on the object.
Explanation: