1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RoseWind [281]
3 years ago
6

Describe, using the relevant physics, how moving a magnet near a [ 1 2 ] solenoid induces a voltage across it. How does the spee

d of the magnet a ect the voltage? What about turning the magnet upside down?
Physics
1 answer:
Svetllana [295]3 years ago
5 0

Answer:

Explanation:

Moving a magnet might cause a change in the magnetic field going through the solenoid. Whether or not it will change depends on the movement.

According to Faraday's law of induction a voltage is induced in a coil by a change in the magnetic flux. Magnetic flux is defined as the dot product of the magnetic field (a vector field) by the area enclosed by a loop of the coil.

\Phi B = -\int{B} \, dA

The voltage is induced by the variation of the magnetic flux:

\epsilon = -N * \frac{d \Phi B}{dt}

Where

ε: electromotive fore

N: number of turns in the coil

ΦB: magnetic flux

Moving the magnet faster would increase the rare of change of the magnetic flux, resulting in higher induced voltage.

Turning the magnet upside down would invert the direction of the magnetic field, reversing the voltage induced.

You might be interested in
PART ONE
stepladder [879]

Answer:

1. A1, B2, C3

2. 47.1°

Explanation:

Sum of forces in the x direction:

∑Fₓ = ma

f − Fᵥᵥ = 0

f = Fᵥᵥ

Sum of forces in the y direction:

∑Fᵧ = ma

N − W = 0

N = W

Sum of moments about the base of the ladder:

∑τ = Iα

Fᵥᵥ h − W (b/2) = 0

Fᵥᵥ h = ½ W b

Fᵥᵥ (l sin θ) = ½ W (l cos θ)

l Fᵥᵥ sin θ = ½ l W cos θ

The correct set of equations is A1, B2, C3.

At the smallest angle θ, f = Nμ.  Substituting into the first equation, we get:

Nμ = Fᵥᵥ

Substituting the second equation into this equation, we get:

Wμ = Fᵥᵥ

Substituting this into the third equation, we get:

l (Wμ) sin θ = ½ l W cos θ

μ sin θ = ½ cos θ

tan θ = 1 / (2μ)

θ = atan(1 / (2μ))

θ = atan(1 / (2 × 0.464))

θ ≈ 47.1°

5 0
3 years ago
a golfer tees off and hits a golf ball at a speed of 31 m/s and an angle of 35 degrees. how far did the ball travel before hitti
poizon [28]
Ans: R = Ball Travelled = 92.15 meters.

Explanation:
First we need to derive that formula for the "range" in order to know how far the ball traveled before hitting the ground.

Along x-axis, equation would be:
x = x_o + v_o_xt +  \frac{at^2}{2}

Since there is no acceleration along x-direction; therefore,
x = x_o + v_o_xt

Since v_o_x = v_ocos \alpha and x_o=0; therefore above equation becomes,

x = v_ocos \alpha t --- (A)

Now we need to find "t", and the time is not given. In order to do so, we shall use the y-direction motion equation. Before hitting the ground y ≈ 0 and a = -g; therefore,

=> y = y_o + v_o_yt -  \frac{gt^2}{2}
=> t =  \frac{2v_o_y}{g}

Since v_o_y = sin \alpha; therefore above equation becomes,
t = \frac{2v_osin \alpha }{g}

Put the value of t in equation (A):

(A) => x = v_ocos \alpha \frac{2v_osin \alpha }{g}

Where x = Range = R, and 2sin \alpha cos \alpha = sin(2 \alpha ); therefore above equation becomes:

=> R = (v_o)^2 *\frac{sin(2 \alpha )}{g}

Now, as:
v_o = 31 m/s

and \alpha = 35°
and g = 9.8 m/(s^2)

Hence,
R = (31)^2 *\frac{sin(2 *35 )}{9.8}

Ans: R = 92.15 meters.

-i
7 0
3 years ago
Which one of the statements below is true about mechanical waves?
TEA [102]
They require a medium to travel through
5 0
3 years ago
Two +1 C charges are separated by 30000 m, what is the magnitude of<br> the force?
Kipish [7]

Answer:

<em>The magnitude of the force is 10 N</em>

Explanation:

<u>Coulomb's Law</u>

The electrostatic force between two charged objects is directly proportional to the product of their charges and inversely proportional to the square of the distance between the two objects.

Written as a formula:

\displaystyle F=k\frac{q_1q_2}{d^2}

Where:

k=9\cdot 10^9\ N.m^2/c^2

q1, q2 = the objects' charge

d= The distance between the objects

We have two identical charges of q1=q2=1 c separated by d=30000 m, thus the magnitude of the force is:

\displaystyle F=9\cdot 10^9\frac{1*1}{30000^2}

\displaystyle F=9\cdot 10^9\frac{1*1}{30000^2}

F = 10 N

The magnitude of the force is 10 N

7 0
3 years ago
A change in kinetic of an object is equal to the ___
podryga [215]

Answer:C..net work done on the object.

Explanation:

4 0
3 years ago
Other questions:
  • a police car drives with a constant speed of 24 miles per hour .how long will it take to travela distance of 72 miles​
    13·1 answer
  • The circuit shown in the picture can be broken in four places. Which places can the circuit be broken and still have at least on
    5·1 answer
  • Which object moves in simple harmonic motion?\
    8·1 answer
  • A rectangle had sides of 8.80 ft and 24.1 ft. Calculate the area of the rectangle in cm^2 (you should get 197000 cm^2) show your
    13·1 answer
  • Even though forces are acting on this box, it remains at rest on the table. Which force is represented by vector A.
    5·2 answers
  • If you ride your bicycle down a straight road for 500 m then turn around and ride back your distance is your displacement a.Grea
    13·1 answer
  • Define constant speed
    7·2 answers
  • What is a phenomenon in your own words?
    10·2 answers
  • 4. When an ice cube in a glass of water melts, does the water level in the glass
    8·1 answer
  • Easy Guided Online Tutorial A special electronic sensor is embedded in the seat of a car that takes riders around a circular loo
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!