Answer and explanation:
The right answer is b) "The excess charge has distributed itself evenly over the outside surface of the sphere".
The hollow metal sphere is a conductor. This means that charges can move freely over its surface. On the other side, a metal body act as an equipotential body. Once some charge is set and there is no voltage differential imprinted over the body, to keep being an equipotential body the charges must distribute evenly on the external surface. Must not exist charge in the volume, or would exist an electrical field and therefore a voltage differential. Also, the charge distribution in the internal surface must be null. If you apply gauss theorem with a gaussian sphere with a radius between the internal and external surface, knowing that field E is null, the enclosed charge must be null.
Answer:
0 m/s
Explanation:
Acceleration is a maximum at the lowest and highest positions. The velocity is 0 at these positions.
<span> <span> The answer to your question is: increase the force applied to the object.
Two items are provided as a basis for that conclusion:
1. According to Newton's Second Law of Motion, the formula for finding force is: F = ma
where F is the force,
m is the mass of an object,
and a is the acceleration of the object.
And 2: work = force x distance or W = F x d.</span></span>
Answer
A) Positively charged two insulating rod are brought closed to an object they repel each other. It means the Object is positively charged. Because similar charge repel each other.
The correct answer is Option A.
B) we know force between to charges is calculated using Formula
.......(1)
form the given condition in the question



from equation (1)

hence, the correct answer is Option C.
><span>It can travel through vacuum.
The rays must travel in the vacuum of space between Earth's atmosphere and the sun.</span>