<span>Alcohol begins to affect your brain when it crosses the blood-brain barrier. After this, it acts on the nerve cells and disrupts their communication with each other as well as other body parts. It inhibits the activity of some neural pathways due to which a person starts feeling lethargic, sluggish, and slow-moving.</span>
No. I do not agree with Stefan. Quite the contrary. I disagree
with his description of "<span>angle of incidence" as the angle between
the surface of the mirror and the incoming ray.
The correct description of "angle of incidence" is </span><span>the angle between
the NORMAL TO the surface of the mirror and the incoming ray.
Thus, the true angle of incidence is the complement of the angle that
Stefan calculates or measures.</span>
First the amount of work done in lifting up the snow ball to a height of 1.2m is equal to the potential energy of the ball after the lift.
Therefore mass× gravitational pull×height will give us the work done
=3.2kg ×9.8N/kg×1.2m
=37.632J
then, the work done over the 25m distance if found by the following formula: work done=force×distance
=1.0N×25m
=25J
On reaching the headless snowman you have to lift the ball a further 1.1m to place it as the head 2.3m high.
therefore this will be a change in potential energy which is equal to work done in lifting the ball the additional 1.1m
=m×g×h
=3.2kg×9.8N/kg×1.1m
=34.496J
To get the total we add the amount of work done in the various instances.
Answer:
3.45×10⁻⁴mm (or 0.000345mm)
Explanation:
Use a method called dimensional analysis here. It involves a chain of conversions, so we'll need some conversions to work with.
- 1nm = 1×10⁻⁹m
- 1mm = 1×10⁻³m
- 345nm; which is given
If you knew the conversion from nanometers to millimeters then you could just do it in one step. But I don't, so I won't. Anyways, you put the conversions into fraction form like so:
And then orient them in a way where multiplying the two (or more in other instances) gives you the units you want. In this cas it's millimeters so you'll have:
(345nm)•(1×10⁻⁹m/1nm)•(1mm/1×10⁻³m)
Notice how all the units reduce except for mm. From here you just multiply across and should get 345×10⁻⁶mm which simplifies to 3.45×10⁻⁴mm.
C. They all transfer energy