Answer:
Option C. Energy Profile D
Explanation:
Data obtained from the question include:
Enthalpy change ΔH = 89.4 KJ/mol.
Enthalpy change (ΔH) is simply defined as the difference between the heat of product (Hp) and the heat of reactant (Hr). Mathematically, it is expressed as:
Enthalpy change (ΔH) = Heat of product (Hp) – Heat of reactant (Hr)
ΔH = Hp – Hr
Note: If the enthalpy change (ΔH) is positive, it means that the product has a higher heat content than the reactant.
If the enthalpy change (ΔH) is negative, it means that the reactant has a higher heat content than the product.
Now, considering the question given, the enthalpy change (ΔH) is 89.4 KJ/mol and it is a positive number indicating that the heat content of the product is higher than the heat content of the reactant.
Therefore, Energy Profile D satisfy the enthalpy change (ΔH) for the formation of CS2 as it indicates that the heat content of product is higher than the heat content of the reactant.
Answer:
Br^-1
Explanation:
It is an ion that gained an extra electron making it 36 electrons but the other. one is in the neutral state with 35 electrons
Answer:
the answer is Fructose
Explanation:
the reason is because when it brakes down it forms a sort of fructose
Answer:
±0.005 g
Explanation:
The uncertainty depends on whether the measurement was obtained manually or digitally.
1. Manual
The minimum uncertainty is ±0.01 g.
It may be greater, depending on random or personal errors
2. Digital
Most measurements of mass are now made on digital scales.
A digital device must always round off the measurement it displays.
For example, if the display reads 20.00, the measurement must be between 20.005 and 19.995 (±0.005).
If the measured value were 20.006, the display would round up to 20.01.
If the measured value were 19.994, the display would round down to 19.99.
The uncertainty is ±0.005 g.
The scale shown below would display a mass of 20.00 g