The grams of potassium chlorate that are required to produce 160 g of oxygen is 408.29 grams
<u><em>calculation</em></u>
2 KClO₃→ 2 KCl + 3O₂
Step 1: find the moles of O₂
moles = mass÷ molar mass
from periodic table the molar mass of O₂ = 16 x2 = 32 g/mol
moles = 160 g÷ 32 g/mol = 5 moles
Step2 : use the mole ratio to determine the moles of KClO₃
from equation given KClO₃ : O₂ is 2:3
therefore the v moles of KClO₃ = 5 moles x 2/3 = 3.333 moles
Step 3: find the mass of KClO₃
mass= moles x molar mass
from periodic table the molar mass of KClO₃
= 39 + 35.5 + (16 x3) =122.5 g/mol
mass = 3.333 moles x 122.5 g/mol =408.29 grams
Answer:
1. A.
2. D.
3. E.
4. B
5. C.
Explanation:
1. The water cycle uses radiant energy from the sun to function
2. Crystals form by crystalization, hence the name.
3. Condensation is when water vapor changes to a liquid.
4. The water cycle is the movement of water on earth on and below it's crust.
5. Transperation is how plants release water into the air. Also how humans sweat.
Have a most wonderous day!
Answer:
These properties are basically the inverse of each other.
Explanation:
- Electronegativity is the tendency of an atom to attract an electron and make it a part of its orbital.
Ionization enthalpy, is the energy required to remove an electron from an atom.
- More electronegative atoms have high ionization enthalpies If the energy required to remove an electron is less, i.e. the atom has more tendency to give electron, it would thus have less tendency to take electron.
- Values and tendency of electronegativity in the periodic table: In general, the electronegativity of a non‐metal is larger than that of metal. For the elements of one period the electronegativities increase from left to right across the periodic table. For the elements of one main group the electronegativities decrease from top to bottom across the periodic table. To the subgroup elements, there’s no regular rule.
- Values and tendency of ionization potential in the periodic table: The first ionization energy is the energy which is required when a gaseous atom/ion loses an electron to form a gaseous +1 valence ion. The energy which is required for a gaseous +1 valence ion to loose an electron to form a gaseous +2 valence ion, is called the second ionization energy of an element. In general, the second ionization energy is higher than the first ionization energy of an element.
The first ionization energies of the elements of one period increase from the left to the right across the periodic table. According to the elements of main group, the first ionization energies generally decreases from top to bottom across the periodic table.