Answer:
<h2>The lengths of the bases of the trapezoid:</h2><h2>
42/h cm and 84/h cm.</h2>
Step-by-step explanation:
The formula of an area of a triangle:

<em>b</em><em> </em>- base
<em>h</em> - height
We have <em>b = 21cm, h = 6cm</em>.
Substitute:

The formula of an area of a trapezoid:

<em>b₁, b₂</em> - bases
<em>h</em><em> - </em>height
We have <em>b₁ = 2b₂</em>, therefore <em>b₁ + b₂ = 2b₂ + b₂ = 3b₂</em>.
The area of a triangle and the area of a trapezoid are the same.
Therefore
<em>multiply both sides by 2</em>
<em>divide both sides by 3</em>
<em>divide both sides by h</em>


Answer:
he has 80 cents
Step-by-step explanation:
dime=10 cents
Answer:
Continuously
Step-by-step explanation:
Compounded continuously:
A = Pe^(rt)
A = 11,000 e^(0.0625 × 10)
A = 20,550.71
Compounded semiannually (twice per year):
A = P(1 + r)^t
A = 11,000 (1 + 0.063/2)^(2×10)
A = 11,000 (1 + 0.0315)^20
A = 20,453.96
The expression that expresses all possible lengths of segment AB is 27 < AB < 81. The correct option is the second option 27 < AB < 81
<h3>Properties of a triangle</h3>
From the question, we are to determine the expression that expresses all possible lengths of segment AB
From one of the properties of a triangle,
The <u>third side</u> of any triangle is greater than the difference of the other <u>two sides</u>; and the <u>third side</u> of any triangle is lesser than the sum of the <u>two other sides</u>
Then, we can write that
AB < 27 + 54
and
AB > 54 - 27
Putting the two inequalities together, we get
54 - 27 < AB < 27 + 54
27 < AB < 81
Hence, the expression that expresses all possible lengths of segment AB is 27 < AB < 81. The correct option is the second option 27 < AB < 81
Learn more on the Properties of a triangle here: brainly.com/question/1851668
#SPJ1
Answer:
inequality form: x<14
Step-by-step explanation: Isolate the variable by dividing each side by factors that don't contain the variable.