Answer:
4+6=10
Step-by-step explanation:
Answer:
The margin of error for the 95% confidence interval used to estimate the population proportion is of 0.0209.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the z-score that has a p-value of
.
The margin of error is of:

In a clinical test with 2161 subjects, 1214 showed improvement from the treatment.
This means that 
95% confidence level
So
, z is the value of Z that has a p-value of
, so
.
Margin of error:



The margin of error for the 95% confidence interval used to estimate the population proportion is of 0.0209.
Answer:
add 6 Cubes to the other side
Step-by-step explanation:
Since there are 3 cubes on one pan
and nine on the other you would need to
subtract 9-3
6 cubes to make them balance!
Answer:
x = 17 and y = 10
Step-by-step explanation:
ABCD is a parallelogram
So AB = CD and AD = BC
so
3x - 9 = 42
3x = 51
x = 17
and
4y - 3 = 37
4y = 40
y = 10
Answer
x = 17 and y = 10
Answer:
So we reject the null hypothesis and accept the alternate hypothesis that rats learn slower with sound.
Step-by-step explanation:
In this data we have
Mean= u = 18
X= 38
Standard deviation = s= 6
1) We formulate the null and alternate hypothesis as
H0: u = 18 against Ha : u > 18 One tailed test .
2) The significance level alpha = ∝= 0.05 and Z alpha has a value ± 1.645 for one tailed test.
3)The test statistics used is
Z= X- u / s
z= 38-18/6= 3.333
4) The calculated value of z = 3.33 is greater than the z∝ = 1.645
5) So we reject the null hypothesis and accept the alternate hypothesis that rats learn slower with sound.
First we set the criteria for determining the true of value of the variable. That whether the rats learn in less or more than 18 trials.
Then we find the value of z for the given significance value given and the test about to be checked.
Then the test statistic is determined and calculated.
Then both value of z and z alpha re compared. If the test statistics falls in the rejection region reject the null hypothesis and conclude alternate hypothesis is true.
The figure shows that the calulated z value lies outside the given z values