A'(-6, -10), B'(-3,-13), and C'(-5,-1) are the vertices of the ΔA'B'C' under the translation rule (x,y)→(x,y-3). This can be obtained by putting the ΔABC's vertices' values in (x, y-3).
<h3>Calculate the vertices of ΔA'B'C':</h3>
Given that,
ΔABC : A(-6,-7), B(-3,-10), C(-5,2)
(x,y)→(x,y-3)
The vertices are:
- A(-6,-7 )⇒ (-6,-7-3) = A'(-6, -10)
- B(-3,-10) ⇒ (-3,-10-3) = B'(-3,-13)
- C(-5,2) ⇒ (-5,2-3) = C'(-5,-1)
Hence A'(-6, -10), B'(-3,-13), and C'(-5,-1) are the vertices of the ΔA'B'C' under the translation rule (x,y)→(x,y-3).
Learn more about translation rule:
brainly.com/question/15161224
#SPJ1
LolAnswer:
Step-by-step explanation:
The probability that both marbles will be a red color is:
6..... ⇔ number that satisfies the constraint
_____
15..... ⇔ number of outcomes
Credit. That's why the stock market crash was so terrible in 1929.