Answer:

Step-by-step explanation:
Two Tangent Theorem: Tangents which meet at same point are equal in length.
Here tangents at J and H meet at I.

Using Laplace transform we have:L(x')+7L(x) = 5L(cos(2t))sL(x)-x(0) + 7L(x) = 5s/(s^2+4)(s+7)L(x)- 4 = 5s/(s^2+4)(s+7)L(x) = (5s - 4s^2 -16)/(s^2+4)
=> L(x) = -(4s^2 - 5s +16)/(s^2+4)(s+7)
now the boring part, using partial fractions we separate 1/(s^2+4)(s+7) that is:(7-s)/[53(s^2+4)] + 1/53(s+7). So:
L(x)= (1/53)[(-28s^2+4s^3-4s^2+35s-5s^2+5s)/(s^2+4) + (-4s^2+5s-16)/(s+7)]L(x)= (1/53)[(4s^3 -37s^2 +40s)/(s^2+4) + (-4s^2+5s-16)/(s+7)]
denoting T:= L^(-1)and x= (4/53) T(s^3/(s^2+4)) - (37/53)T(s^2/(s^2+4)) +(40/53) T(s^2+4)-(4/53) T(s^2/s+7) +(5/53)T(s/s+7) - (16/53) T(1/s+7)
Answer:
10 hours
Step-by-step explanation:
let x be the total number of hours
Amazing design total charge = 45x+250
super structures total charge = 60x+100
both companies charge the same amount when both equation equals
45x+250=60x+100
60x-45x=250-100
15x=150
x=10
therefore at 10 hours both companies will charge the same amount
Answer:
Second choice:


Fifth choice:


Step-by-step explanation:
Let's look at choice 1.


I'm going to subtract 1 on both sides for the first equation giving me
. I will replace the
in the second equation with this substitution from equation 1.

Expand using the distributive property and the identity
:




So this not the desired result.
Let's look at choice 2.


Solve the first equation for
by dividing both sides by 2:
.
Let's plug this into equation 2:



This is the desired result.
Choice 3:


Solve the first equation for
by adding 3 on both sides:
.
Plug into second equation:

Expanding using the distributive property and the earlier identity mentioned to expand the binomial square:



Not the desired result.
Choice 4:


I'm going to solve the bottom equation for
since I don't want to deal with square roots.
Add 3 on both sides:

Divide both sides by 2:

Plug into equation 1:

This is not the desired result because the
variable will be squared now instead of the
variable.
Choice 5:


Solve the first equation for
by subtracting 1 on both sides:
.
Plug into equation 2:

Distribute and use the binomial square identity used earlier:



.
This is the desired result.