1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
weqwewe [10]
3 years ago
9

What is diffrence between ammeter and voltmeter

Physics
1 answer:
Daniel [21]3 years ago
3 0
VOLTMETER : voltage
AMMETER: current
You might be interested in
A student is given three wires that are made from different materials, but each wire has the same physical dimensions. For a giv
Ymorist [56]

Answer:

Use the ammeter to measure the current that flows through each wire, because a larger current that flows through the wire corresponds to a smaller resistivity

Explanation:

Since they are connected to a constant voltage power source, the potential difference does not change. The potential difference is proportional to the product of the current and the resistance and, the resistance opposes the flow of electric current. It is clear to see that a large current that flows through the current means there is a lesser resistance to the flow of current at constant potential difference across the circuit.

6 0
3 years ago
A kangaroo jumps straight up to a vertical height of 1.45 m. How long was it in the air before returning to Earth?
dexar [7]

Answer:

1.08 s

Explanation:

From the question given above, the following data were obtained:

Height (h) reached = 1.45 m

Time of flight (T) =?

Next, we shall determine the time taken for the kangaroo to return from the height of 1.45 m. This can be obtained as follow:

Height (h) = 1.45 m

Acceleration due to gravity (g) = 9.8 m/s²

Time (t) =?

h = ½gt²

1.45 = ½ × 9.8 × t²

1.45 = 4.9 × t²

Divide both side by 4.9

t² = 1.45/4.9

Take the square root of both side

t = √(1.45/4.9)

t = 0.54 s

Note: the time taken to fall from the height(1.45m) is the same as the time taken for the kangaroo to get to the height(1.45 m).

Finally, we shall determine the total time spent by the kangaroo before returning to the earth. This can be obtained as follow:

Time (t) taken to reach the height = 0.54 s

Time of flight (T) =?

T = 2t

T = 2 × 0.54

T = 1.08 s

Therefore, it will take the kangaroo 1.08 s to return to the earth.

3 0
3 years ago
If a rock is thrown upward on the planet Mars with a velocity of 15 m/s, its height above the ground (in meters) after t seconds
s2008m [1.1K]

(a) The velocity (in m/s) of the rock after 1 second is 11.28 m/s.

(b) The velocity of the rock after 2 seconds is 7.56 m/s.

(c) The time for the block to hit the surface is 4.03.

(d) The velocity of the block at the maximum height is 0.

<h3>Velocity of the rock</h3>

The velocity of the rock is determined as shown below;

Height of the rock after 1 second; H(t) = 15(1) - 1.86(1)² = 13.14 m

v² = u² - 2gh

where;

  • g is acceleration due to gravity in mars = 3.72 m/s²

v² = (15)² - 2(3.72)(13.14)

v² = 127.23

v = √127.23

v = 11.28 m/s

<h3>Velocity of the rock when t = 2 second</h3>

v = dh/dt

v = 15 - 3.72t

v(2) = 15 - 3.72(2)

v(2) = 7.56 m/s

<h3>Time for the rock to reach maximum height</h3>

dh/dt = 0

15 - 3.72t = 0

t = 4.03 s

<h3>Velocity of the rock when it hits the surface</h3>

v = u - gt

v = 15 - 3.72(4.03)

v = 0

Learn more about velocity at maximum height here: brainly.com/question/14638187

8 0
2 years ago
What property do the following elements have in common? Li, C, and F A) They are poor conductors of electricity. B) Each element
Aloiza [94]

Answer: Option (D) is the correct answer.

Explanation:

The given elements Li, C and F are all second period elements. So, when we move from left to right across a period then there occurs increase in number of valence electrons as there occurs increase in total number of electrons.

So, it means more electrons are added to the same energy level.

Thus, we can conclude that a property of valence electrons for each element is located in the same energy level is common in the given elements.

7 0
3 years ago
Read 2 more answers
Give 1 real life example of a scenario that takes advantage of the inverse relationship between force and time when impulse is c
OverLord2011 [107]

Answer:

On real life example of a scenario that takes advantage of the inverse relationship between force and time when impulse is constant is when making a serve with a lawn tennis racket

How It is an example of impulse is that when a serve is made by moving the bat slowly, the lawn tennis player uses less force and the ball is in contact with the string for longer a period

When however, the lawn tennis player moves the racket faster, with the strings of the racket highly tensioned  he uses more force and the ball also spends less time on the racket to produce the same momentum

Explanation:

The impulse of a force, ΔP is given by the following formula;

ΔP = F × Δt

Where ΔP is constant, we have;

F ∝ 1/Δt

Therefore, for the same impulse, when the force is increased, the time of contact is decreases and vice versa.

7 0
3 years ago
Other questions:
  • What is the minimum mass needed for a star to be on the main sequence? What happens to stars that do not meet the minimum mass?
    10·1 answer
  • Find the fundamental frequency and the next three frequencies that could cause standing-wave patterns on a string that is 30.0 m
    9·1 answer
  • The above Free Body Diagram represents the motion of a toy car across a floor from left to right. The weight of the .5 kg car is
    12·1 answer
  • If your friend said that to that kinetic energy was changing to potential emergy at point c, how would you respond
    5·1 answer
  • What are the three ways to lessen any risk?
    7·2 answers
  • The linear impulse delivered by the hit of a boxer is 202 N · s during the 0.244 s of contact. What is the magnitude of the aver
    12·1 answer
  • A 2,200 kg car moving at 18 m/s hits a barrier and comes to a stop. How much work is done to bring the car to a stop?3.6 x 105J3
    11·1 answer
  • A 15 kg mass is lifted to a height of 2m. What is gravitational potential energy at this position
    9·2 answers
  • An object of mass 2.0 kg is attached to the top of a vertical spring that is anchored to the floor. The unstressed length of the
    8·1 answer
  • A lot of energy is not stored in biomass, but is used for biological processes instead. Which process
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!