1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bezimeni [28]
3 years ago
8

The six statements below represent Newton's three laws of motion and Kepler's three laws of planetary motion. Match each stateme

nt to the scientist (Kepler or Newton) associated with it. Drag the names in the left-hand column to the appropriate blanks in the right-hand column. The names can be used more than once.
1. Reset Help Kepler Force = mass x acceleration Newton
2. A planet moves faster in the part of its orbit nearer the Sun and slower when farther from the Sun, sweeping out
3. equal areas in equal times. For any force, there is an equal and opposite reaction force.
4. An object moves at constant velocity if there is no net force acting upon it. :
5. The orbit of each planet about the Sun is an ellipse with the Sun at one focus
6. More distant planets orbit the Sun at slower average speeds, obeying the precise mathematical relationship p2-a3
Physics
1 answer:
mote1985 [20]3 years ago
5 0

Answer:

1. Force = mass x acceleration - Newton

2. A planet moves faster in the part of its orbit nearer the Sun and slower when farther from the Sun, sweeping out  equal areas in equal times - Kepler

3. For any force, there is an equal and opposite reaction force - Newton .

4. An object moves at constant velocity if there is no net force acting upon it - Newton

5. The orbit of each planet about the Sun is an ellipse with the Sun at one focus  - Kepler.

6. More distant planets orbit the Sun at slower average speeds, obeying the precise mathematical relationship p2-a3 - Kepler.

Explanation:

The three laws of planetary motion formulated by Johannes Kepler or Kepler's laws of planetary motion:

  1. The first law states that the planets move around the Sun in an elliptical orbit with the Sun at one of the foci.
  2. The second law states that the line segment joining a planet to the Sun sweeps out equal areas in equal time.
  3. The third law states that the square of the orbital period (p) of a planet is directly proportional to the cube of the mean distance (a) from the Sun (or semi-major axis of its orbit) i.e., p² is proportional to a³.

The three laws of motion formulated by Sir Isaac Newton or Newton's laws of motion:

  1. The first law, also known as the law of inertia states that an object at rest or moves at a constant velocity will remain at rest or keep moving at a constant velocity unless it is acted upon by a force.
  2. The second law states that the total force (F) applied on an object is directly related to the acceleration (a) of that object produced by the applied force and the mass (m) of the object, i.e., F = ma (assuming the mass m is constant).
  3. The third law, also known as the law of action and reaction states that when an object exerts a force on another object, then the latter exerts a force equal in magnitude and opposite in direction on the former object i.e., for every action, there is an equal and opposite reaction. The example includes the recoiling of a gun when it fires a bullet forward.
You might be interested in
A woman lifts her 100-newton child up one meter and carries her for a distance of 50 meters to the child's bedroom. How much wor
tankabanditka [31]
100 J

Please mark me brainliest it would be greatly appreciated haha
5 0
3 years ago
Read 2 more answers
Someone please help will mark as brainliest
forsale [732]
Getting it right because you do not want to spread false information. To be first isnt always the best, sure you might feel better being the first, but you won’t always get it right.
5 0
2 years ago
You are traveling in a car toward a hill at a speed of 36.4 mph. The car's horn emits sound waves of frequency 231 Hz, which mov
Marina CMI [18]

Answer:

<em>a. The frequency with which the waves strike the hill is 242.61 Hz</em>

<em>b. The frequency of the reflected sound wave is 254.23 Hz</em>

<em>c. The beat frequency produced by the direct and reflected sound is  </em>

<em>    11.62 Hz</em>

Explanation:

Part A

The car is the source of our sound, and the frequency of the sound wave it emits is given as 231 Hz. The speed of sound given can be used to determine the other frequencies, as expressed below;

f_{1} = f[\frac{v_{s} }{v_{s} -v} ] ..............................1

where f_{1} is the frequency of the wave as it strikes the hill;

f is the frequency of the produced by the horn of the car = 231 Hz;

v_{s} is the speed of sound = 340 m/s;

v is the speed of the car = 36.4 mph

Converting the speed of the car from mph to m/s we have ;

hint (1 mile = 1609 m, 1 hr = 3600 secs)

v = 36.4 mph *\frac{1609 m}{1 mile} *\frac{1 hr}{3600 secs}

v = 16.27 m/s

Substituting into equation 1 we have

f_{1} =  231 Hz (\frac{340 m/s}{340 m/s - 16.27 m/s})

f_{1}  = 242.61 Hz.

Therefore, the frequency which the wave strikes the hill is 242.61 Hz.

Part B

At this point, the hill is the stationary point while the driver is the observer moving towards the hill that is stationary. The frequency of the sound waves reflecting the driver can be obtained using equation 2;

f_{2} = f_{1} [\frac{v_{s}+v }{v_{s} } ]

where f_{2} is the frequency of the reflected sound;

f_{1}  is the frequency which the wave strikes the hill = 242.61 Hz;

v_{s} is the speed of sound = 340 m/s;

v is the speed of the car = 16.27 m/s.

Substituting our values into equation 1 we have;

f_{2} = 242.61 Hz [\frac{340 m/s+16.27 m/s }{340 m/s } ]

f_{2}  = 254.23 Hz.

Therefore, the frequency of the reflected sound is 254.23 Hz.

Part C

The beat frequency is the change in frequency between the frequency of the direct sound  and the reflected sound. This can be obtained as follows;

Δf = f_{2} -  f_{1}  

The parameters as specified in Part A and B;

Δf = 254.23 Hz - 242.61 Hz

Δf  = 11.62 Hz

Therefore the beat frequency produced by the direct and reflected sound is 11.62 Hz

3 0
2 years ago
A student who weighs 750 newton’s runs up the steps (which have a height of 8 meters) in 13.5 seconds. How much work did the stu
nikklg [1K]

Answer:

B

Explanation:

6 0
2 years ago
How would you define a disturbance in matter, such as water?
motikmotik

Answer:wave travel

Explanation:Because gravity pulls the water in the crest downward .Forced out from beneath the falling crests ,the falling water pushes former troughs upwards and the wave moves to a new position causing a disturbance.

3 0
3 years ago
Other questions:
  • The box plots show the summer temperatures, in degrees Fahrenheit, in two cities. Summer Temperatures in City A Summer Temperatu
    5·2 answers
  • when an object moves down and does not stop which force is acting more strongly on the object, friction or gravity? explain
    13·1 answer
  • A person running down the hallway at a velocity of 4.2 m/s comes to a stop in a time of 1.8 seconds to avoid hitting the wall. W
    12·2 answers
  • What 3 factors should be considered when designing a lighting rod?
    10·1 answer
  • Exam
    5·2 answers
  • The human body can store excess animo acids as a protein source ?
    12·1 answer
  • 5.
    5·1 answer
  • According to the article, why might acting happy actually make one happy?
    5·1 answer
  • A measure of the average kinetic energy per particle in a quantity of matter
    5·1 answer
  • I HAVE NOOOO IDEA!!!!!!!!!! HELP!!!!!!!!!!
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!