Force of gravity = Mass x Gravitational force
Fg=mg
Fg = (5.7)(9.8)
Fg= 55.86 N
<span>You cant change the curve of a graph with out changing the equation</span>
Answer:
0 Newtons
Explanation:
The velocity of the object does not change, it is a constant 54 km/hr. When velocity does not change, acceleration is zero. Using the formula Force = mass x acceleration, we find:
mass = 1200 kg
acceleration = 0
F = (1200)(0) = 0
Answer:


Explanation:
<u>Temperature Units Conversion
</u>
The conversion formula between Celsius and Fahrenheit temperature scales is well-known. But we'll use the provided data to derive the formula. Let's model the relationship between Fahrenheit (F) and Celsius (C) as a linear function like

Where m and b must be computed according to the pair of conditions given. The values for each temperature scale are (C,F)=(0,32) and (100,212). Replacing the first value

It means that

By using the second point

Solving for m

Simplifying

So, the conversion formula is

Which is the widely known formula for temperature conversion
Solving for C, we get the inverse relation

To solve this problem we will use the definition of the kinematic equations of centrifugal motion, using the constants of the gravitational acceleration of the moon and the radius of this star.
Centrifugal acceleration is determined by

Where,
v = Velocity
r = Radius
From the given data of the moon we know that gravity there is equivalent to

While the radius of the moon is given by

If we rearrange the function to find the speed we will have to



The speed for this to happen is 1.7km/s