Compare the density of the object in question to the density of water. If its density is less than water, it will float. For example, oak floats because its density is 0.7 g/cm³. If the density of an object is greater than water, it will sink.
Answer:
The volume increases by 100%.
Explanation:
<u>Step 1:</u> Data given
Number of moles ideal gas = 1 mol
Initial temperature = 305 K
Final temperature = 32°C + 273.15 = 305.15 K
Initial pressure = 2 atm
final pressure = 101 kPa = 0.996792 atm
R = gasconstant = doesn't change
V1 = initial volume
V2= the final volume
<u>Step 2: </u>Calculate volume of original gas
P*V = n*R*T
(P*V)/ T = constante
(P1 * V1) / T1 = (P2 * V2)/ T2
In this situation we have:
(2atm * V1)/ 305 = (0.996792 *V2) / 305.15
0.006557*V1 = 0.003266*V2
V2 = 2*V1
We see that the final volume is twice the initial volume. So the volume gets doubled. The volume increases by 100%.
Best Answer: o.n. = 70 means 70% isoctane for which o.n. = 100 and 30% of heptane for which o.n. = 0