Answer:
8.06966961e+25
Explanation:
Atom = Mole / 6.0221415E+23
1 Mole = 6.0221415E+23 Atom
Great question! The subatomic particles that have most of the mass in the particle are the positive proton, and the neutral neutron. Therefore, protons and neutrons are the two subatomic particles have approximately 1 atomic mass unit each.
Answer: D.
Explanation: Females have XX chromosomes while males have XY
The density of the rock is 3.314g/mL
CALCULATE DENSITY:
- According to this question, a rock weighs 23.2g. After dropping the rock into a graduated cylinder containing 55mL of water, the level changes to 62mL.
- This means that the volume of the rock can be calculated as follows:
Volume of rock = 62mL - 55mL
Volume of rock = 7mL
Density can be calculated using the formula as follows:
Density = mass ÷ volume
Density = 23.2 ÷ 7
Density = 3.314g/mL
Therefore, the density of the rock is 3.314g/mL
Learn more: brainly.com/question/6034174?referrer=searchResults
Answer:
1461.7 g of AgI
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
CaI₂ + 2AgNO₃ —> 2AgI + Ca(NO₃)₂
From the balanced equation above,
1 mole of CaI₂ reacted to produce 2 moles of AgI.
Next, we shall determine the number of mole AgI produced by the reaction of 3.11 moles of CaI₂. This can be obtained as follow:
From the balanced equation above,
1 mole of CaI₂ reacted to produce 2 moles of AgI.
Therefore, 3.11 moles of CaI₂ will react to produce = 3.11 × 2 = 6.22 moles of AgI
Finally, we shall determine the mass of 6.22 moles of AgI. This can be obtained as follow:
Mole of AgI = 6.22 moles
Molar mass of AgI = 108 + 127
= 235 g/mol
Mass of AgI =?
Mass = mole × molar mass
Mass of AgI = 6.22 × 235
Mass of AgI = 1461.7 g
Therefore, 1461.7 g of AgI were obtained from the reaction.