<span>Valence electrons are those in the outer most orbital shell (the valence shell). Elements in the same column (group) have the same number of valence electrons. Hydrogen is in Group 1. If you were to look at a periodic table of the elements, Lithium is right under Hydrogen.
You are correct, the answer is D. Lithium.</span>
Answer:
the sun goes away and takes heat with it
Explanation:
Answer:

Explanation:
Hello,
In this case, the undergoing chemical reaction is:

Therefore, since the masses of both of the reactants are given, one computes the available moles of sulfuric acid and those moles of it consumed by the sodium hydroxide as shown below:

In such a way, since there is more available sulfuric acid than it that is consumed, the sodium hydroxide is the limiting reagent, consequently, the maximum mass of sodium sulfate turns out:

Best regards.
Answer:
27 min
Explanation:
The kinetics of an enzyme-catalyzed reaction can be determined by the equation of Michaelis-Menten:
![v = \frac{vmax[S]}{Km + [S]}](https://tex.z-dn.net/?f=v%20%3D%20%5Cfrac%7Bvmax%5BS%5D%7D%7BKm%20%2B%20%5BS%5D%7D)
Where v is the velocity in the equilibrium, vmax is the maximum velocity of the reaction (which is directed proportionally of the amount of the enzyme), Km is the equilibrium constant and [S] is the concentration of the substrate.
So, initially, the velocity of the formation of the substrate is 12μmol/9min = 1.33 μmol/min
If Km is a thousand times smaller then [S], then
v = vmax[S]/[S]
v = vmax
vmax = 1.33 μmol/min
For the new experiment, with one-third of the enzyme, the maximum velocity must be one third too, so:
vmax = 1.33/3 = 0.443 μmol/min
Km will still be much smaller then [S], so
v = vmax
v = 0.443 μmol/min
For 12 μmol formed:
0.443 = 12/t
t = 12/0.443
t = 27 min
Answer:
d) carbon dioxide and water