1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slamgirl [31]
3 years ago
7

A scale on a map shows that 2 inches equals 25 miles. How many miles is represented by 1/4 inch on the map?

Mathematics
1 answer:
FinnZ [79.3K]3 years ago
8 0
3.125

to get this answer you divide 25 by 2, then divide that by 4, which equals 3.125

good luck hope I helped:)
You might be interested in
The Ferris wheel has a radius of 70 feet. The distance between the wheel and the ground is 4 feet. The rectangular coordinate sy
Gemiola [76]

Answer:

x² + (y-74)² = 4900

Step-by-step explanation:

Circle equation: (x-h)² + (y-k)² = r²

"h" refers to horizontal shifts while "k" refers to vertical shifts. If the center of the wheel is directly above the origin of the rectangular plane and the entire wheel is 4 ft. from the ground then:

  • h = 0
  • k = 74 (the radius + 4 ft.)
  • r = 70

So plugging those into the equation of circles, we get the answer above.

7 0
3 years ago
I'll give u full brainlist if u do this!
alex41 [277]

Answer:

a. 54.75

b. 2.64

Step-by-step explanation:

6 0
3 years ago
A homogeneous rectangular lamina has constant area density ρ. Find the moment of inertia of the lamina about one corner
frozen [14]

Answer:

I_{corner} =\frac{\rho _{ab}}{3}(a^2+b^2)

Step-by-step explanation:

By applying the concept of calculus;

the moment of inertia of the lamina about one corner I_{corner} is:

I_{corner} = \int\limits \int\limits_R (x^2+y^2)  \rho d A \\ \\ I_{corner} = \int\limits^a_0\int\limits^b_0 \rho(x^2+y^2) dy dx

where :

(a and b are the length and the breath of the rectangle respectively )

I_{corner} =  \rho \int\limits^a_0 {x^2y}+ \frac{y^3}{3} |^ {^ b}_{_0} \, dx

I_{corner} =  \rho \int\limits^a_0 (bx^2 + \frac{b^3}{3})dx

I_{corner} =  \rho [\frac{bx^3}{3}+ \frac{b^3x}{3}]^ {^ a} _{_0}

I_{corner} =  \rho [\frac{a^3b}{3}+ \frac{ab^3}{3}]

I_{corner} =\frac{\rho _{ab}}{3}(a^2+b^2)

Thus; the moment of inertia of the lamina about one corner is I_{corner} =\frac{\rho _{ab}}{3}(a^2+b^2)

7 0
3 years ago
Write the slope-intercept form of the equation of the line through the given point and slope.
Mandarinka [93]

Answer:

y=-4x+1

Step-by-step explanation:

Graph (1,-3)

Go down 4 over one/ up left one

Get y-intercept

Then BOOM you got it

8 0
2 years ago
What is the value of the expression below when x equals 4?<br><br> 13 + 15x
antoniya [11.8K]

Answer:

73

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Other questions:
  • Describe the graph of y &gt; mx, where m &gt; 0.
    15·2 answers
  • If the radius of a circle is increased by x, by what amount is the circumference of the circle increased? A) x. B) 2x. C) 2piex
    12·1 answer
  • You have quarters and dimes that total $2.80. your friend says it is possible that the number of quarters is 8 more than the num
    13·1 answer
  • Find the value of a and b
    15·1 answer
  • Describe a way in which the diagram above illustrates the unique line postulate.
    15·1 answer
  • Help which one <br><br> A . (1/2)(4)(3)<br> B . (1/2)(4)(11)<br> C . (1/2)(4)(8)<br> D . (1/2)(8)(4)
    10·1 answer
  • Find the value of X.<br><br> Need Help
    10·1 answer
  • What is the length of the missing leg? If necessary, round to the nearest tenth.
    7·1 answer
  • Does the point (–9, 8) satisfy the equation y = –x + 1?
    6·1 answer
  • Please help i will give brainly?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!