Answer: Th enthalpy of combustion for the given reaction is 594.244 kJ/mol
Explanation: Enthalpy of combustion is defined as the decomposition of a substance in the presence of oxygen gas.
W are given a chemical reaction:



To calculate the enthalpy change, we use the formula:

This is the amount of energy released when 0.1326 grams of sample was burned.
So, energy released when 1 gram of sample was burned is = 
Energy 1 mole of magnesium is being combusted, so to calculate the energy released when 1 mole of magnesium ( that is 24 g/mol of magnesium) is being combusted will be:

Answer:
C. Solid
Explanation:
It's most about the kinetic energy, when molecules have the least amount of room to move around, they have the least amount of energy.
For example if you think about gas and how spread out the molecules are in order to evaporate, there it the highest amount of energy there.
Answer:Acids. :H2CO3, H3PO4,H3OBR
CH3COOH,
Bases MgO,NH4OH,CaOH
Neutral species; CaC,CaCO3,ClO3
Explanation:
I am looking for this answer too. Did you ever find it? I could really use the help