Answer:
The expression of an equilibrium constant will given as:
![K_c=\frac{[NH_3]^2}{[N_2][H_2]^3}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5BH_2%5D%5E3%7D)
Explanation:
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
K is the constant of a certain reaction when it is in equilibrium

The expression of an equilibrium constant will given as:
![K_c=\frac{[NH_3]^2}{[N_2][H_2]^3}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5BH_2%5D%5E3%7D)
Structure is in document below.
The mononitration of p-xylene can be easily carried out at 30 degrees C.
Para-xylene<span> (</span><span>p-xylene</span><span>) is an </span>aromatic hydrocarbon, <span>one of the three </span>isomers<span> of </span>dimethylbenzene. Para-xylene is colorless and highly flammable, not acutely toxic and has some <span>narcotic effects.</span>
The answer is A. Has a low pH in solution.
1 kpa = 7.5 mm of Hg [Remember it or can be found on internet ]
So, 275 kpa = 7.5 x 275 = 2062.5 mm of Hg
Explanation:
In order to go from mass of magnesium to atoms of magnesium, we have to do two things:
Convert mass of Mg to moles of Mg using the molar mass of Mg as a conversion factor
Convert moles of Mg to atoms of Mg using Avogadro's number (6.02×1023) as a conversion factor
Step 1:
Before we start, I should note that the molar mass of Mg is 24.31gmol. We can go from mass to moles using dimensional analysis. The key to dimensional analysis is understanding that the units that you don't need any more cancel out, leaving the units that are desired:
48.60g
×1mol24.31g
=2.00mol
Step 2:
We'll use this relationship:
www.sprinklernewz.uswww.sprinklernewz.us
Using the moles of Mg that we just obtained, we can use Avogrado's number to perform dimensional analysis in order to cancel out units of mol to end up with atoms of Mg:
2.00mol
×6.02×1023atoms1mol
=1.204×1024atoms
Thus, 48.60g of Mg is equivalent to 1.204×1024atoms
Hope this helped :)