Explanation:
Non-metals are the species that are electron deficient and they are able to accept one or more electrons from a donor atom in order to complete their octet.
For example, carbon (C), nitrogen (N), chlorine, (Cl), phosphorus (P) etc are all non-metals.
Metals are the species that contain more number of electrons in their valence shell and in order to attain stability they easily lose an electron.
For example, sodium (Na), lithium (Li), Beryllium (Be), Magnesium (Mg) etc are all metals.
Metalloids are the species that show properties of both metals and non-metals.
For example, Boron (B), Antimony (Sb), Silicon (Si) and Germanium (Ge) etc are metalloids.
Answer: On heating, Magnesium forms its oxide; while potassium manganate(VII) decomposes
Explanation:
Magnesium Mg, on heating forms Magnesium oxide
2Mg(s) + O2(g) --> 2MgO
Potassium permanganate KMnO4, on heating decomposes to potassium manganate K2MnO4, manganese dioxide MnO2, and Oxygen gas O2.
2KMnO4 --> K2MnO4 + MnO2 + O2
The difference in observation is that, on heating, Magnesium forms its OXIDE as product; while potassium manganate(VII) decomposes, giving OFF most of its constituents and reducing its weight.
Answer : The expected coordination number of NaBr is, 6.
Explanation :
Cation-anion radius ratio : It is defined as the ratio of the ionic radius of the cation to the ionic radius of the anion in a cation-anion compound.
This is represented by,

When the radius ratio is greater than 0.155, then the compound will be stable.
Now we have to determine the radius ration for NaBr.
Given:
Radius of cation,
= 102 pm
Radius of cation,
= 196 pm

As per question, the radius of cation-anion ratio is between 0.414-0.732. So, the coordination number of NaBr will be, 6.
The relation between radius ratio and coordination number are shown below.
Therefore, the expected coordination number of NaBr is, 6.
Answer: The molarity of the borax solution is 0.107 M
Explanation:
The neutralization reaction is:

According to neutralization law:

where,
= basicity of
= 2
= acidity of borax = 2
= concentration of
= 1.03 M
= concentration of borax =?
= volume of
= 2.07ml
= volume of borax = 20.0 ml
Now put all the given values in the above law, we get the molarity of borax:

By solving the terms, we get :

Thus the molarity of the borax solution is 0.107 M
Answer:
4.96 x 10²²atoms
Explanation:
Given parameters
Mass of Ba = 11.3g
Unknown:
Number of atoms = ?
Solution:
To solve this problem, we need to find the number of moles of Ba first and then the number of atoms it contains.
Number of moles =
Molar mass of Ba = 137.3g/mol
Number of moles =
= 0.08mole
1 mole of a substance contains 6.02 x 10²³ atoms
0.08 mole of Ba will contain 0.08 x 6.02 x 10²³ atoms = 4.96 x 10²²atoms