Answer:
The essence including its given problem is outlined in the following segment on the context..
Explanation:
The given values are:
Moles of CO₂,
x = 0.01962
Moles of water,



Compound's mass,
= 0.4647 g
Let the compound's formula will be:

Combustion's general equation will be:
⇒ 
On putting the estimated values, we get
⇒ 
⇒ 
⇒ 
⇒ 
Now,
x : y : z = 
= 
= 
= 
So that the empirical formula seems to be "C₃H₆O₂".
Explanation:
when an iron bar rust is an example of a chemical change in which a new substance is formed and the change is not easily reversible.for iron to rust moisture and air must be present.while when a substance freezes,it can be easily reversed through melting and no new substance is formed.this change is termed a physical change.
Answer : The molecular weight of a substance is 157.3 g/mol
Explanation :
As we are given that 7 % by weight that means 7 grams of solute present in 100 grams of solution.
Mass of solute = 7 g
Mass of solution = 100 g
Mass of solvent = 100 - 7 = 93 g
Formula used :

where,
= change in freezing point
= temperature of pure water = 
= temperature of solution = 
= freezing point constant of water = 
m = molality
Now put all the given values in this formula, we get


Therefore, the molecular weight of a substance is 157.3 g/mol
Answer:
Rate = k [OCl] [I]
Explanation:
OCI+r → or +CI
Experiment [OCI] M I(-M) Rate (M/s)2
1 3.48 x 10-3 5.05 x 10-3 1.34 x 10-3
2 3.48 x 10-3 1.01 x 10-2 2.68 x 10-3
3 6.97 x 10-3 5.05 x 10-3 2.68 x 10-3
4 6.97 x 10-3 1.01 x 10-2 5.36 x 10-3
The table above able shows how the rate of the reaction is affected by changes in concentrations of the reactants.
In experiments 1 and 3, the conc of iodine is constant, however the rate is doubled and so is the conc of OCl. This means that the reaction is in first order with OCl.
In experiments 3 and 4, the conc of OCl is constant, however the rate is doubled and so is the conc of lodine. This means that the reaction is in first order with I.
The rate law is given as;
Rate = k [OCl] [I]