Answer:
Explanation:
a ) The direction of angular velocity vector of second hand will be along the line going into the plane of dial perpendicular to it.
b ) If the angular acceleration of a rigid body is zero, the angular velocity will remain constant.
c ) If another planet the same size as Earth were put into orbit around the Sun along with Earth the moment of inertia of the system will increase because the mass of the system increases. Moment of inertia depends upon mass and its distribution around the axis.
d ) Increasing the number of blades on a propeller increases the moment of inertia , because both mass and mass distribution around axis of rotation increases.
e ) It is not possible that a body has the same moment of inertia for all possible axes because a body can not remain symmetrical about all axes possible. Sphere has same moment of inertia about all axes passing through its centre.
f ) To maximize the moment of inertia of a flywheel while minimizing its weight, the shape and distribution of mass should be such that maximum mass of the body may be situated at far end of the body from axis of rotation . So flywheel must have thick outer boundaries and this should be
attached with axis with the help of thin rods .
g ) When the body is rotating at the same place , its translational kinetic energy is zero but its rotational energy can be increased
at the same place.
Idkhhhhhhhhhhubvgbvcccc xzzz. Bcc bbb
Answer:
Angle with the +x axis is θ = 79.599degree
Then the velocity of owner = 1.235m/s
Explanation:
Given that the mass of dog is m1 =26.2 kg
velocity of dog is u1 = 3.02 m/s (north)
mass of cat is m2 = 5.3 kg
velocity is u2 = 2.74 m/s (east )
Mass of owner is M = 65.1 kg
Consider the east direction along +x axis andnorth along +y
momentum of dog is Py = m1 x u1
= 79.124 kg.m/s (j)
momentum of cat is Px = m2 x u2
= 14.522 kg.m/s (i)
Then the net magnitude of momentum is P = (Px2 + Py2)1/2
= 80.445
Angle with the +x axis is θ =tan-1(Py / Px ) = 79.599 degree
Then the velocity of owner is v = P / M = 1.235 m/s
1.549×10-19lJ is the energy of a photon emitted when an electron in a hydrogen atom undergoes a transition from =7 to =1.
The equation E= hcE =hc, where h is Planck's constant and c is the speed of light, describes the inverse relationship between a photon's energy (E) and the wavelength of light ().
The Rydberg formula is used to determine the energy change.
Rydberg's original formula used wavelengths, but we may rewrite it using units of energy instead. The result is the following.
aaΔE=R(1n2f−1n2i) aa
were
2.17810-18lJ is the Rydberg constant.
The initial and ultimate energy levels are ni and nf.
As a change of pace from
n=5 to n=3 gives us
ΔE
=2.178×10-18lJ (132−152)
=2.178×10-18lJ (19−125)
=2.178×10-18lJ×25 - 9/25×9
=2.178×10-18lJ×16/225
=1.549×10-19lJ
Learn more about Rydberg formula here-
brainly.com/question/13185515
#SPJ4