Answer:
FATS
Explanation:
Fats are made up of carbon and hydrogen elements joined together in long groups called hydrocarbons. The simplest unit of fat is the fatty acid, of which there are two types: saturated and unsaturated.
The independent variable is the type of fuel used and the dependent variable is the speed of the race car. The independent variable could be changed through the experimental process to see its relation with the dependent variable<span>. The dependent variable is the result of the independent variable changes.</span>
The wavelength of the note is
![\lambda = 39.1 cm = 0.391 m](https://tex.z-dn.net/?f=%5Clambda%20%3D%2039.1%20cm%20%3D%200.391%20m)
. Since the speed of the wave is the speed of sound,
![c=344 m/s](https://tex.z-dn.net/?f=c%3D344%20m%2Fs)
, the frequency of the note is
![f= \frac{c}{\lambda}=879.8 Hz](https://tex.z-dn.net/?f=f%3D%20%5Cfrac%7Bc%7D%7B%5Clambda%7D%3D879.8%20Hz%20)
Then, we know that the frequency of a vibrating string is related to the tension T of the string and its length L by
![f= \frac{1}{2L} \sqrt{ \frac{T}{\mu} }](https://tex.z-dn.net/?f=f%3D%20%5Cfrac%7B1%7D%7B2L%7D%20%5Csqrt%7B%20%5Cfrac%7BT%7D%7B%5Cmu%7D%20%7D%20%20)
where
![\mu=0.550 g/m = 0.550 \cdot 10^{-3} kg/m](https://tex.z-dn.net/?f=%5Cmu%3D0.550%20g%2Fm%20%3D%200.550%20%5Ccdot%2010%5E%7B-3%7D%20kg%2Fm)
is the linear mass density of our string.
Using the value of the tension, T=160 N, and the frequency we just found, we can calculate the length of the string, L:
Answer:
The expected dynamic error is 0.019
The phase shift is -23.10°C
Explanation:
The explanation is shown on the first uploaded image
Answer:
T
Explanation:
= magnitude of current in each wire = 2.0 A
= length of the side of the square = 4 cm = 0.04 m
= length of the diagonal of the square =
a =
(0.04) = 0.057 m
= magnitude of magnetic field by wires at A and C
![B = \left ( \frac{\mu _{o}}{4\pi } \right )\left ( \frac{2i}{a} \right )](https://tex.z-dn.net/?f=B%20%3D%20%5Cleft%20%28%20%5Cfrac%7B%5Cmu%20_%7Bo%7D%7D%7B4%5Cpi%20%7D%20%5Cright%20%29%5Cleft%20%28%20%5Cfrac%7B2i%7D%7Ba%7D%20%5Cright%20%29)
![B = (10^{-7}) \left ( \frac{2(2)}{0.04} \right )](https://tex.z-dn.net/?f=B%20%3D%20%2810%5E%7B-7%7D%29%20%5Cleft%20%28%20%5Cfrac%7B2%282%29%7D%7B0.04%7D%20%5Cright%20%29)
T
= magnitude of magnetic field by wire at B
![B' = \left ( \frac{\mu _{o}}{4\pi } \right )\left ( \frac{2i}{r} \right )](https://tex.z-dn.net/?f=B%27%20%3D%20%5Cleft%20%28%20%5Cfrac%7B%5Cmu%20_%7Bo%7D%7D%7B4%5Cpi%20%7D%20%5Cright%20%29%5Cleft%20%28%20%5Cfrac%7B2i%7D%7Br%7D%20%5Cright%20%29)
![B' = (10^{-7}) \left ( \frac{2(2)}{0.057} \right )](https://tex.z-dn.net/?f=B%27%20%3D%20%2810%5E%7B-7%7D%29%20%5Cleft%20%28%20%5Cfrac%7B2%282%29%7D%7B0.057%7D%20%5Cright%20%29)
T
Net magnitude of the magnetic field at D is given as
![B_{net} = \sqrt{B^{2}+B^{2}} + B'](https://tex.z-dn.net/?f=B_%7Bnet%7D%20%3D%20%5Csqrt%7BB%5E%7B2%7D%2BB%5E%7B2%7D%7D%20%2B%20B%27)
![B_{net} = \sqrt{2} B + B'](https://tex.z-dn.net/?f=B_%7Bnet%7D%20%3D%20%5Csqrt%7B2%7D%20B%20%2B%20B%27)
![B_{net} = \sqrt{2} (10\times 10^{-6}) + (7.02\times 10^{-6})](https://tex.z-dn.net/?f=B_%7Bnet%7D%20%3D%20%5Csqrt%7B2%7D%20%2810%5Ctimes%2010%5E%7B-6%7D%29%20%2B%20%287.02%5Ctimes%2010%5E%7B-6%7D%29)
T