Answer:
13.5
Explanation:
Mass: 5kg
Initial Velocity: -15
Final Velocity: 12
Force: 10
We can use the equation: Vf = Vi + at
We need to find acceleration, and we can use the equation, F=ma,
We have mass and the force so it would look like this, 10=5a, and 5 times 2 would equal 10, so acceleration would be 2.
Now we have all the variables to find time.
Back to Vf = Vi + at, plug the numbers in, 12 = -15 + 2(t)
Plugging them in into desmos gives 13.5 for time.
Answer:
It has 5 I hope this helps you
Answer:
XL sleep usual Addison officer at home and ear is not a short time to be be free and ear is a short time to make a short time
Explanation:
so that I can take the class on Monday and ear is not a short time to be be free and ear is not a short time to be be free and ear is not a short time to be be free and ear is not a short time to time for a day or night and ear buds is Anshu and duster and duster fgor a day or night is Anshu and duster for a day or not a week of computer science from your computer and I am in the same as I am a short of ti and you can be the first time I will be be
-- The speed of light in air is very close to 3 x 10⁸ m/s.
Whatever the actual number is, it's equivalent to roughly
7 times around the Earth in 1 second. So for this kind of
problem, you can assume that we see things at the same time
that they happen; don't bother worrying about how long it takes
for the light to reach you.
-- For sound, it's a different story. Sound in air only travels at
about 340 m/s. It takes sound almost 5 seconds to go 1 mile.
-- Now, the lightning and thunder happen at the same time.
The light travels to you at the speed of light, so you see the
lightning pretty much when it happens. But the sound of the
thunder comes poking along at 340 m/s, and arrives AFTER
the sight of the lightning.
The length of time between the sight and the sound is about
99.9999% the result of the time it takes the sound to reach you.
If the thunder arrived at you 3 seconds after the light did, then
the sound traveled
(340 m/s) x (3 s) = 1,020 meters .
(about 0.63 of a mile)
(If you're worried about ignoring the time it takes
for the light to reach you ...
It takes light 0.0000034 second to cover the same 1,020 meters,
so including it in the calculation would not change the answer.)
Answer:B)439.21 Hz
Explanation:
Given
velocity of train 
frequency of train 
speed of sound 
frequency from Doppler effect can be calculated by




