1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yKpoI14uk [10]
3 years ago
12

A point charge Q of mass M is located initially at the center of the ring. When it is displaced slightly, the point charge accel

erates along the x axis to infinity. Show that the ultimate speed of the point charge is v # ' 2keQ2 MR ( 1/2 An electric dipole is located along the y axis as shown in Figure P25.69. The magnitude of its electric dipole moment is defined as p # 2qa. (a) At a point P, which is far from the dipole (r .. a), show that the electric potential is V # ke p cos ( r 2 69. 67. The x axis is the symmetry axis of a stationary uniformly charged ring of radius R and charge Q (Fig. P25.67). 68.
Physics
1 answer:
dolphi86 [110]3 years ago
6 0

Answer:

n musical notation, stems are the, "thin, vertical lines that are directly connected to the [note] head." Stems may point up or down. ... There is an exception to this rule: if a chord contains a second, the stem runs between the two notes with the higher being placed on the right of the stem and the lower on the left.

Explanation:

You might be interested in
A bumper cart has a mass of 200 kg and has a protective bumper around it that behaves like a spring. The spring constant is 5000
34kurt
Part A:
For this part we’re assuming all the kinetic energy of the moving bumper car is converted into elastic potential energy in the spring since the car is brought to rest. Therefore you can find the total kinetic energy to get your answer:

KE = ½ mv^2
KE = ½ (200)(8)^2
KE = 6400 J

Part B:
Now you can use Hooke’s law to find the force:

F = kx
F = (5000)(0.2)
F = 1000 N
4 0
3 years ago
What is the first semiconductor
madam [21]
<span>
English "natural philosopher" (the contemporary term for physicist) Michael Faraday is renowned for his discovery of the principles of electro-magnetic induction and electro-magnetic rotation, the interaction between electricity and magnetism that led to the development of the electric motor and generator. The unit of measurement of electrical capacitance - the farad (F) - is named in his honor. Faraday's experimental work in chemistry, which included the discovery of benzene, also led him to the first documented observation of a material that we now call a semiconductor. While investigating the effect of temperature on "sulphurette of silver" (silver sulfide) in 1833 he found that electrical conductivity increased with increasing temperature. This effect, typical of semiconductors, is the opposite of that measured in metals such as copper, where conductivity decreases as temperature is increased. In a chapter entitled "On Conducting Power Generally" in his book Experimental Researches in Electricity Faraday writes "I have lately met with an extraordinary case ... which is in direct contrast with the influence of heat upon metallic bodies ... On applying a lamp ... the conducting power rose rapidly with the heat ... On removing the lamp and allowing the heat to fall, the effects were reversed." We now understand that raising the temperature of most semiconductors increases the density of charge carriers inside them and hence their conductivity. This effect is used to make thermistors - special resistors that exhibit a decrease in electrical resistance (or an increase in conductivity) with an increase in temperature. <span> Next Milestone </span> Contemporary Documents <span> <span>Faraday, M. Experimental Researches in Electricity, Volume 1. (London: Richard and John Edward Taylor, 1839) pp.122-124 (para. 432). Note: This section appears on different pages in later editions of the book. The material in the book is reprinted from articles by Faraday published in the Philosophical Transactions of the Royal Society of 1831-1838. </span> </span> More Information <span> <span>Hirshfeld, Alan W. The Electric Life of Michael Faraday. Walker & Company (March 7, 2006).</span> <span>Friedel, Robert D. Lines and Waves: Faraday, Maxwell and 150 Years of Electromagnetism. Center for the History of Electrical Engineering, Institute of Electrical and Electronics Engineers (1981).</span> </span> </span>
3 0
3 years ago
What is the energy of moving electrical charges
Simora [160]
The energy of moving electrical charges is Electrical energy



Hope its the answer you are finding and hope it helps....
3 0
3 years ago
An electron moving in the direction of the +x-axis enters a magnetic field. If the electron experiences a magnetic deflection in
Gnom [1K]

Answer:

<em>-z axis</em>

Explanation:

According to the left hand rule for an electron in a magnetic field, hold the thumb of the left hand at a right angle to the rest of the fingers, and the rest of the fingers parallel to one another. If the thumb represents the motion of the electron, and the other fingers represent the direction of the field, then the palm will push in the direction of the force on the electron. In this case, the left hand will be held out with the thumb pointing to the right (+x axis), and the palm facing your body (-y axis). The magnetic field indicated by the other fingers will point down in the the -z axis.

5 0
3 years ago
Is Heredity nature or nurture?
Luden [163]
The answer is nature
8 0
3 years ago
Read 2 more answers
Other questions:
  • A pendulum swings back and forth 5 times in 10 seconds what is the period of the pendulum?
    12·1 answer
  • An air bubble has a volume of 1.70 cm³ when it is released by a submarine 115 m below the surface of a lake. What is the volume
    10·1 answer
  • The force of gravity depends on the mass of objects and the distance between them. TRUE OR FALSE?
    10·1 answer
  • Iron oxide reacts with aluminum to give aluminum oxide and iron. What kind of chemical reaction is this?
    7·1 answer
  • a family drives from boston (100 miles away) to new york (500 miles away) in 10 hours . How fast were they were traveling?
    13·1 answer
  • What is the main source of groundwater? A. precipitation falling into man-made wells B. precipitation seeping through pores and
    9·1 answer
  • Suppose a child drives a bumper car head on into the side rail, which exerts a force of 3400 N on the car for 0.400 s. (Assume t
    10·1 answer
  • Use the diagram below modeling a football kicked from a horizontal surface B
    6·2 answers
  • Find the force of gravity between a cubic meter of water (1000kg) and the Sun. The Sun's mass is 1.99 x10^30 kg and is 1.50 x10^
    15·1 answer
  • Please answer and fast i am in a test
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!