let's multiply both sides in each equation by the LCD of all fractions in it, thus doing away with the denominator.
![\begin{cases} \cfrac{1}{2}x+\cfrac{1}{3}y&=7\\\\ \cfrac{1}{4}x+\cfrac{2}{3}y&=6 \end{cases}\implies \begin{cases} \stackrel{\textit{multiplying both sides by }\stackrel{LCD}{6}}{6\left( \cfrac{1}{2}x+\cfrac{1}{3}y \right)=6(7)}\\\\ \stackrel{\textit{multiplying both sides by }\stackrel{LCD}{12}}{12\left( \cfrac{1}{4}x+\cfrac{2}{3}y\right)=12(6)} \end{cases}\implies \begin{cases} 3x+2y=42\\ 3x+8y=72 \end{cases} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%20%5Ccfrac%7B1%7D%7B2%7Dx%2B%5Ccfrac%7B1%7D%7B3%7Dy%26%3D7%5C%5C%5C%5C%20%5Ccfrac%7B1%7D%7B4%7Dx%2B%5Ccfrac%7B2%7D%7B3%7Dy%26%3D6%20%5Cend%7Bcases%7D%5Cimplies%20%5Cbegin%7Bcases%7D%20%5Cstackrel%7B%5Ctextit%7Bmultiplying%20both%20sides%20by%20%7D%5Cstackrel%7BLCD%7D%7B6%7D%7D%7B6%5Cleft%28%20%5Ccfrac%7B1%7D%7B2%7Dx%2B%5Ccfrac%7B1%7D%7B3%7Dy%20%5Cright%29%3D6%287%29%7D%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bmultiplying%20both%20sides%20by%20%7D%5Cstackrel%7BLCD%7D%7B12%7D%7D%7B12%5Cleft%28%20%5Ccfrac%7B1%7D%7B4%7Dx%2B%5Ccfrac%7B2%7D%7B3%7Dy%5Cright%29%3D12%286%29%7D%20%5Cend%7Bcases%7D%5Cimplies%20%5Cbegin%7Bcases%7D%203x%2B2y%3D42%5C%5C%203x%2B8y%3D72%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf \stackrel{\textit{using elimination}}{ \begin{array}{llll} 3x+2y=42&\times -1\implies &\begin{matrix} -3x \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~-2y=&-42\\ 3x+8y-72 &&~~\begin{matrix} 3x \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~+8y=&72\\ \cline{3-4}\\ &&~\hfill 6y=&30 \end{array}} \\\\\\ y=\cfrac{30}{6}\implies \blacktriangleright y=5 \blacktriangleleft \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7Busing%20elimination%7D%7D%7B%20%5Cbegin%7Barray%7D%7Bllll%7D%203x%2B2y%3D42%26%5Ctimes%20-1%5Cimplies%20%26%5Cbegin%7Bmatrix%7D%20-3x%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~-2y%3D%26-42%5C%5C%203x%2B8y-72%20%26%26~~%5Cbegin%7Bmatrix%7D%203x%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%2B8y%3D%2672%5C%5C%20%5Ccline%7B3-4%7D%5C%5C%20%26%26~%5Chfill%206y%3D%2630%20%5Cend%7Barray%7D%7D%20%5C%5C%5C%5C%5C%5C%20y%3D%5Ccfrac%7B30%7D%7B6%7D%5Cimplies%20%5Cblacktriangleright%20y%3D5%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf \stackrel{\textit{substituting \underline{y} on the 1st equation}~\hfill }{3x+2(5)=42\implies 3x+10=42}\implies 3x=32 \\\\\\ x=\cfrac{32}{3}\implies \blacktriangleright x=10\frac{2}{3} \blacktriangleleft \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \left(10\frac{2}{3}~~,~~5 \right)~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7Bsubstituting%20%5Cunderline%7By%7D%20on%20the%201st%20equation%7D~%5Chfill%20%7D%7B3x%2B2%285%29%3D42%5Cimplies%203x%2B10%3D42%7D%5Cimplies%203x%3D32%20%5C%5C%5C%5C%5C%5C%20x%3D%5Ccfrac%7B32%7D%7B3%7D%5Cimplies%20%5Cblacktriangleright%20x%3D10%5Cfrac%7B2%7D%7B3%7D%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20%5Cleft%2810%5Cfrac%7B2%7D%7B3%7D~~%2C~~5%20%5Cright%29~%5Chfill)
Answer:
Dependent: Cost of the ride.
Independent : Number of rides.
Step-by-step explanation:
The independent variable is the variable what we change and the dependent variable is the variables which changes because of that changes.
Here the total cost of ride changes for any change in the number of rides.
Hence, the number of rides is the independent variable and the total cost of ride is the dependent variable
8 yards bc you just multiply the unit cost of each pillow (1 1/3 yards) by 6 bc that’s the total amount of pillows she’s making
Answer:
The first set, -2,0,2,3 are the domains of this relation.