let's firstly convert the mixed fractions to improper fractions and then divide.
![\bf \stackrel{mixed}{6\frac{1}{2}}\implies \cfrac{6\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{13}{2}}~\hfill \stackrel{mixed}{1\frac{5}{8}\implies \cfrac{1\cdot 8+5}{8}}\implies \stackrel{improper}{\cfrac{13}{8}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B6%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B6%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B13%7D%7B2%7D%7D~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B1%5Cfrac%7B5%7D%7B8%7D%5Cimplies%20%5Ccfrac%7B1%5Ccdot%208%2B5%7D%7B8%7D%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B13%7D%7B8%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf \stackrel{\textit{total salad}}{\cfrac{13}{2}}\div \stackrel{\stackrel{\textit{conainer's}}{\textit{capacity}}}{\cfrac{13}{8}}\implies \cfrac{\begin{matrix} 13 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}}{\underset{1}{\begin{matrix} 2 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}}}\cdot \cfrac{\stackrel{4}{\begin{matrix} 8 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}}}{\begin{matrix} 13 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}}\implies 4](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7Btotal%20salad%7D%7D%7B%5Ccfrac%7B13%7D%7B2%7D%7D%5Cdiv%20%5Cstackrel%7B%5Cstackrel%7B%5Ctextit%7Bconainer%27s%7D%7D%7B%5Ctextit%7Bcapacity%7D%7D%7D%7B%5Ccfrac%7B13%7D%7B8%7D%7D%5Cimplies%20%5Ccfrac%7B%5Cbegin%7Bmatrix%7D%2013%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D%7D%7B%5Cunderset%7B1%7D%7B%5Cbegin%7Bmatrix%7D%202%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D%7D%7D%5Ccdot%20%5Ccfrac%7B%5Cstackrel%7B4%7D%7B%5Cbegin%7Bmatrix%7D%208%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D%7D%7D%7B%5Cbegin%7Bmatrix%7D%2013%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D%7D%5Cimplies%204)
Answer:
x = 4/5
Step-by-step explanation:
1) Group like terms
4x + 7x + 5x - 2 - 10 = x
2) Add similar elements
16x - 2 - 10 = x
3) Subtract
16x - 12 = x
4) Add 12 to both sides
16x - 12 + 12 = x + 12
5) Simplify
16x = x + 12
6) Subtract x from both sides
16x - x = x + 12 - x
7) Simplify
15x = 12
8) Divide both sides by 15
15x/15 = 12/15
9) Simplify
x = 4/5
Here's link to the answer:
tinyurl.com/wpazsebu
First fine f(2).
f(2) = 2*2 - 3
f(2) = 4 - 3
f(2) = 1
Now g(3).
g(3) = 4*3
g(3) = 12
Now subtract 1 - 12 = -11
-11 is your answer.
It's gonna be the first answer