9514 1404 393
Answer:
D. (-3, -2)
Step-by-step explanation:
The equations have different coefficients for x and y, so will have one solution. The solutions offered are easily tested in either equation.
Using (x, y) = (-2, -3):
x = y -1 ⇒ -2 = -3 -1 . . . . False
Using (x, y) = (-3, -2):
x = y -1 ⇒ -3 = -2 -1 . . . .True
2x = 3y ⇒ 2(-3) = 3(-2) . . . . True
The solution is (-3, -2).
__
If you'd like to solve the set of equations, substitution for x works nicely.
2(y -1) = 3y
2y -2 = 3y . . eliminate parentheses
-2 = y . . . . . . subtract 2y
x = -2 -1 = -3
The solution is (x, y) = (-3, -2).
18x + 8x = -3
26x = -3
x = -3/26
Answer:
RT = 12 units
Step-by-step explanation:
From the figure attached,
ΔSRQ is right triangle.
m∠R = 90°
An altitude has been constructed from point T to side SQ.
m∠RTQ = 90°
By applying geometric mean theorem in triangle SRQ,


x² = 16 × 9
x² = 144
x = √144
x = 12
Therefore, length of altitude RT is 12 units.
Answer:
P = 6200 / (1 + 5.2e^(0.0013t))
increases the fastest
Step-by-step explanation:
dP/dt = 0.0013 P (1 − P/6200)
Separate the variables.
dP / [P (1 − P/6200)] = 0.0013 dt
Multiply the left side by 6200 / 6200.
6200 dP / [P (6200 − P)] = 0.0013 dt
Factor P from the denominator.
6200 dP / [P² (6200/P − 1)] = 0.0013 dt
(6200/P²) dP / (6200/P − 1) = 0.0013 dt
Integrate.
ln│6200/P − 1│= 0.0013t + C
Solve for P.
6200/P − 1 = Ce^(0.0013t)
6200/P = 1 + Ce^(0.0013t)
P = 6200 / (1 + Ce^(0.0013t))
At t = 0, P = 1000.
1000 = 6200 / (1 + C)
1 + C = 6.2
C = 5.2
P = 6200 / (1 + 5.2e^(0.0013t))
You need to change the exponent from negative to positive.
The inflection points are where the population increases the fastest.