The practical rule would be, times that number, by the result of the first time you multiplied the first number. But, it would all depend by how much your're raising the number by.
<u>
For example:</u>

We do,

But, once again, this was an example. This would show and illustrate the rule of "raising a power".<span />
Answer:
N(4.49m + 5p )
Step-by-step explanation:
N is the number of jars of fruit salad
Example 3 fruit salads:
3(4.49m + 5p )
Step-by-step explanation:
Hope it helps uh
Plz mark as brainlist
We performed the following operations:
![f(x)=\sqrt[3]{x}\mapsto g(x)=2\sqrt[3]{x}=2f(x)](https://tex.z-dn.net/?f=f%28x%29%3D%5Csqrt%5B3%5D%7Bx%7D%5Cmapsto%20g%28x%29%3D2%5Csqrt%5B3%5D%7Bx%7D%3D2f%28x%29)
If you multiply the parent function by a constant, you get a vertical stretch if the constant is greater than 1, a vertical compression if the constant is between 0 and 1. In this case the constant is 2, so we have a vertical stretch.
![g(x)=2\sqrt[3]{x}\mapsto h(x)=-2\sqrt[3]{x}=-g(x)](https://tex.z-dn.net/?f=g%28x%29%3D2%5Csqrt%5B3%5D%7Bx%7D%5Cmapsto%20h%28x%29%3D-2%5Csqrt%5B3%5D%7Bx%7D%3D-g%28x%29)
If you change the sign of a function, you reflect its graph across the x axis.
![h(x)=-2\sqrt[3]{x}\mapsto m(x)=-2\sqrt[3]{x}-1=h(x)-1](https://tex.z-dn.net/?f=h%28x%29%3D-2%5Csqrt%5B3%5D%7Bx%7D%5Cmapsto%20m%28x%29%3D-2%5Csqrt%5B3%5D%7Bx%7D-1%3Dh%28x%29-1)
If you add a constant to a function, you translate its graph vertically. If the constant is positive, you translate upwards, otherwise you translate downwards. In this case, the constant is -1, so you translate 1 unit down.