Answer:
∠C=90°
∠A=67°
∠B=23°
Step-by-step explanation:
For angle C:
Thales' Theorem states that an angle inscribed across a circle's diameter is always a right angle.
Therefore, since AB is the diameter(hypotenuse) then angle C is the right angle. (90°)
For Angle A:
The measure of arc BC= 134 degrees. We can just use a formula for an inscribed triangle. ∠A = 1/2 (mBC)
∠A= (1/2)134
∠A= 77°
For angle B:
All triangle angles all add up to 180. We can just subtract angles A and C from 180°:
∠B = 180-(90+67)
∠B = 23°
Answer:
I think the number of terms are 3
A = LW
Divide both sides by L (To isolate W)
W =
The range of the <em>quadratic</em> function y = (2 / 3) · x² - 6 is {- 6, 0, 18, 48}.
<h3>What is the range of a quadratic equation?</h3>
In this case we have a <em>quadratic</em> equation whose domain is stated. The domain of a function is the set of x-values associated to only an element of the range of the function, that is, the set of y-values of the function. We proceed to evaluate the function at each element of the domain and check if the results are in the choices available.
x = - 9
y = (2 / 3) · (- 9)² - 6
y = 48
x = - 6
y = (2 / 3) · (- 6)² - 6
y = 18
x = - 3
y = (2 / 3) · (- 3)² - 6
y = 0
x = 0
y = (2 / 3) · 0² - 6
y = - 6
x = 3
y = (2 / 3) · 3² - 6
y = 0
x = 6
y = (2 / 3) · 6² - 6
y = 18
x = 9
y = (2 / 3) · 9² - 6
y = 48
The range of the <em>quadratic</em> function y = (2 / 3) · x² - 6 is {- 6, 0, 18, 48}.
To learn more on functions: brainly.com/question/12431044
#SPJ1