Answer:
Gas, has no shape but does take up volume
Liquid, white,hm,wax,grey,sweet, white,minty,fresh,
Answer:
5.31x10⁻⁶ C
Explanation:
The cube is located 100 m altitude from the ground, so the superior face is at 100m and has E = 70 N/C, and the inferior face is at the ground with E = 130 N/C.
The electric field is perpendicular to the bottom and the top of the cube, so the total flux is the flux at the superior face plus the flux at the inferior face:
Фtotal = Ф100m + Фground
Where Ф = E*A*cos(α). α is the angle between the area vector and the field (180° at the topo and 0° at the bottom):
Фtotal = E100*A*cos(180°) + Eground*A*cos(0°)
Фtotal = 70A*(-1) + 130*A*1
Фtotal = 60A
By Gauss' Law, the flux is:
Фtotal = q/ε, where q is the charge, and ε is the permittivity constant in vacuum = 8.854x10⁻¹² C²/N.m²
A = 100mx100m = 10000 m²
q = 60*10000*8.854x10⁻¹²
q = 5.31x10⁻⁶ C
Possibly decomposition but not sure
Wavelength is 6.976 x 10^ -35 m
Explanation:
In this, we can use De Broglie’s equation. This equation is the relationship between De Broglie’s wavelength, velocity and the mass of a moving object. In this equation, we are using plank's constant which is 6.626 x 10^-34 m^2 kg/s.
We know that one mile per hour is equivalent to 0.447 M/S.
And One gram is equivalent to 10^-3 kg.
De Broglie’s wavelength = λ ( wave length) = Plank’s constant/ Mass x velocity
λ ( wave length) = 6.626 x 10^ -34/ (425 x10^-3) x ( 50 x 0.447)
= 6.626 x 10^ -34/ 0. 425 x 22.35
= 6.626 x 10^ -34/ 9.498
= 6.976 x10^ -35 m
So, the wavelength of the football will be 6.976 x 10^ -35 m