Answer:
the simplest answer is it loses the water (decahydrate) because it evaporates
Answer:
[H3O+] = 1.0*10^-12 M
[OH-] = 0.01 M
Explanation:
We can use the following equation to find the hydronium ion concentration. Plug in the pH and solve for H3O+.
pH = -log[H3O+]
<u>[H3O+] = 1.0*10^-12 M</u>
Now, to find the hydroxide ion concentration we will use the two following equations.
14 = pH + pOH
pOH = -log[OH-]
14 = 12 + pOH
pOH = 2
2 = -log[OH-]
<u>[OH-] = 0.01 M</u>
Answer:
0.33 mol/kg NH₃
Explanation:
Data:
b(NH₃) = 0.33 mol/kg
b(Na₂SO₄) = 0.10 mol/ kg
Calculations:
The formula for the boiling point elevation ΔTb is

i is the van’t Hoff factor — the number of moles of particles you get from a solute.
(a) For NH₃,
The ammonia is a weak electrolyte, so it exists almost entirely as molecules in solution.
1 mol NH₃ ⟶ 1 mol particles
i ≈ 1, and ib = 1 × 0.33 = 0.33 mol particles per kilogram of water
(b) For Na₂SO₄,
Na₂SO₄(aq) ⟶ 2Na⁺(aq) + 2SO₄²⁻(aq)
1 mol Na₂SO₄ ⟶ 3 mol particles
i = 1 and ib = 3 × 0.10 = 0.30 mol particles per kilogram of water
The NH₃ has more moles of particles, so it has the higher boiling point.