First solve the moles of oxgen present in the compound
mol O = 6.93 g O ( 1 mol O / 16 g O )
mol O = 0.43 mol H
then solve the moles of hydrogen present
mol H = ( 7.36 - 6.93) g H ( 1 mol H / 1 g H)
mol H = 0.43 mol H
so the O and H are in the same mole content so the molecular formula would be OH, but the molar mass will not satisfy. so the answer would be
H2O2
Answer:
0.3192 M
Explanation:
From the question given above, the following data were obtained:
Volume of stock solution (V1) = 5.32 mL Molarity of stock solution (M1) = 6 M
Volume of diluted solution (V2) = 100 mL
Molarity of diluted solution (M2) =?
We can obtain the molarity of the diluted solution by using the dilution formula as shown follow:
M1V1 = M2V2
6 × 5.32 = M2 ×100
31.92 = M2 × 100
Divide both side by 100
M2 = 31.92 / 100
M2 = 0.3192 M
Therefore, the molarity of the diluted solution is 0.3192 M.
The arrangement of molecules within the 3 phases of matter are shown in the picture.
For the solid, the molecules are packed closely together. They don't have much space to move, so they just practically vibrate. For the liquid, the molecules are relatively farther from each other. The liquid molecules can flow freely but not as much as the gases. In the gases, the molecules are very far from each other. They are very sensitive to slight changes of pressure, volume and temperature.
Answer:
Carbon dioxide levels in the Earth's atmosphere have been steadily increasing.
Carbon has a longer average lifetime in the atmosphere.
Explanation:
Today the level of carbon dioxide is higher than at any time in human history. Scientists widely agree that Earth’s average surface temperature has already increased by about 2 F (1 C) since the 1880s, and that human-caused increases in carbon dioxide and other heat-trapping gases are extremely likely to be responsible.
The lifetime in the air of CO2, the most significant man-made greenhouse gas, is probably the most difficult to determine, because there are several processes that remove carbon dioxide from the atmosphere. Between 65% and 80% of CO2 released into the air dissolves into the ocean over a period of 20–200 years.
Experiments suggest that organic molecules could have been synthesized in the atmosphere of early Earth and rained down into the oceans. RNA and DNA molecules — the genetic material for all life — are just long chains of simple nucleotides. Replicating molecules evolved and began to undergo natural selection.