Cant really see it like that
Volume of a Pentagonal Pyramid 5/6 <span>abh
Given,
a = 3 m
b = 5 m
h = 8 m
Volume of a pentagonal pyramid
<span>= </span><span><span>5/6 </span></span><span> 3 m </span><span>×</span><span> 5 m </span><span>×</span><span> 8 m</span>
= 100 m</span>³<span>
</span>
Step-by-step explanation:
2(x + 2) - 4x = 8
2x + 4 - 4x = 8
2x - 4x = 8 - 4
-2x = 4
x = 4/-2
x = -2
Option → A
Answer:
y=6
Step-by-step explanation:
x=20
y=10
x=15 > 20x=15
x=15/20
x=3/5
y=10(3/5)
=6
Answer:
Only equation 1 and 2 are equal.
Step-by-step explanation:
2 (x + 4)2 = 2
2( x² + 8x+ 16) = 2 Applying the square formula
2x² + 16x+ 32 = 2
2x² + 16x+ 32 -2= 0
2x² + 16x+ 30 = 0
2( x² + 8x+ 15)= 0 Taking 2 as common
x2 + 8x + 15 = 0------------eq 1
x2 + 8x + 15 = 0-------------eq 2
(x − 5)2 = 1
x²-10x+25= 1 Applying the square formula
x²-10x+25- 1= 0
x²-10x+24= 0-------------eq 3
x2 − 10x + 26 = 0 -------------eq 4
3(x − 1)2 + 5 = 0
3( x²-2x+1)+5= 0 Applying the square formula
3x²-6x+3+5= 0
3x²-6x+ 8= 0-------------eq 5
3x2 − 6x + 8 =1
3x2 − 6x + 8 -1=0
3x2 − 6x + 7 =0-------------eq 6