Answer:
1:6, 7:36, 2:9
Step-by-step explanation:
2 : 9 → 8 : 36
1 : 6 → 6 : 36
7 : 36
Least → Greatest
1:6, 7:36, 2:9
Answer:
Let the vectors be
a = [0, 1, 2] and
b = [1, -2, 3]
( 1 ) The cross product of a and b (a x b) is the vector that is perpendicular (orthogonal) to a and b.
Let the cross product be another vector c.
To find the cross product (c) of a and b, we have
![\left[\begin{array}{ccc}i&j&k\\0&1&2\\1&-2&3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C0%261%262%5C%5C1%26-2%263%5Cend%7Barray%7D%5Cright%5D)
c = i(3 + 4) - j(0 - 2) + k(0 - 1)
c = 7i + 2j - k
c = [7, 2, -1]
( 2 ) Convert the orthogonal vector (c) to a unit vector using the formula:
c / | c |
Where | c | = √ (7)² + (2)² + (-1)² = 3√6
Therefore, the unit vector is
or
[
,
,
]
The other unit vector which is also orthogonal to a and b is calculated by multiplying the first unit vector by -1. The result is as follows:
[
,
,
]
In conclusion, the two unit vectors are;
[
,
,
]
and
[
,
,
]
<em>Hope this helps!</em>
The center is at origin O(0,0).
If it contains the point, P(-8,6), then the radius r is, by Pythagoras theorem,
r=sqrt((-8)^2+6^2)=10
The general equation of a circle at centre (xc,yc) with radius r is given by
(x-xc)^2+(y-yc)^2=r^2
Substituting r=10, (xc,yc)=(0,0)
the resulting equation is therefore
(x-0)^2+(y-0)^2=10^2
or simply
x^2+y^2=100
Answer:
B
Step-by-step explanation: