Hey!
-----------------------------------------
Answer: Yes 3/6 is rational!
-----------------------------------------
Why? Well, because 3 and 6 are integers that don't repeat. 3/6 simplifies to 1/2 or 0.5 which doesn't repeat so it's rational.
-----------------------------------------
Hope This Helped! Good Luck!
X= 1st integer
x+2= 2nd integer
x+4= 3rd integer
Add the integers together
x + (x + 2) + (x + 4)= 279
combine like terms
3x + 6= 279
subtract 6 from both sides
3x= 273
divide both sides by 3
x= 91 first integer
Substitute x=91 to find 2nd & 3rd integers
2nd Integer
=x+2
=91+2
=93
3rd Integer
=x+4
=91+4
=95
ANSWER: The three test scores are 91, 93 and 95.
Hope this helps! :)
Answer:
ccccc
Step-by-step explanation:
Check the picture below.
since the diameter of the cone is 6", then its radius is half that or 3", so getting the volume of only the cone, not the top.
1)
![\bf \textit{volume of a cone}\\\\ V=\cfrac{\pi r^2 h}{3}~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ r=3\\ h=4 \end{cases}\implies V=\cfrac{\pi (3)^2(4)}{3}\implies V=12\pi \implies V\approx 37.7](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bvolume%20of%20a%20cone%7D%5C%5C%5C%5C%20V%3D%5Ccfrac%7B%5Cpi%20r%5E2%20h%7D%7B3%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20h%3Dheight%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D3%5C%5C%20h%3D4%20%5Cend%7Bcases%7D%5Cimplies%20V%3D%5Ccfrac%7B%5Cpi%20%283%29%5E2%284%29%7D%7B3%7D%5Cimplies%20V%3D12%5Cpi%20%5Cimplies%20V%5Capprox%2037.7)
2)
now, the top of it, as you notice in the picture, is a semicircle, whose radius is the same as the cone's, 3.
![\bf \textit{volume of a sphere}\\\\ V=\cfrac{4\pi r^3}{3}~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=3 \end{cases}\implies V=\cfrac{4\pi (3)^3}{3}\implies V=36\pi \\\\\\ \stackrel{\textit{half of that for a semisphere}}{V=18\pi }\implies V\approx 56.55](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bvolume%20of%20a%20sphere%7D%5C%5C%5C%5C%20V%3D%5Ccfrac%7B4%5Cpi%20r%5E3%7D%7B3%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D3%20%5Cend%7Bcases%7D%5Cimplies%20V%3D%5Ccfrac%7B4%5Cpi%20%283%29%5E3%7D%7B3%7D%5Cimplies%20V%3D36%5Cpi%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bhalf%20of%20that%20for%20a%20semisphere%7D%7D%7BV%3D18%5Cpi%20%7D%5Cimplies%20V%5Capprox%2056.55)
3)
well, you'll be serving the cone and top combined, 12π + 18π = 30π or about 94.25 in³.
4)
pretty much the same thing, we get the volume of the cone and its top, add them up.

Yes, solutions, roots, x-intercepts, and zeros are the same thing.
<h3>
What is a quadratic equation?</h3>
The general quadratic equation is given by:
a*x^2 + b*x + c = 0
So the solutions are the values of x such that the above thing is zero.
On another hand, a parabola or a quadratic function is given by:
a*x^2 + b*x + c = y
The roots, zeros, or x-intercepts (these represent the same thing) are given by:
a*x^2 + b*x + c = 0
- Zero or Root means that when you evaluate the function in that value the outcome is zero.
- X-intercept means that for that value of x, the function intercepts the x-axis, so the function is equal to zero.
So these are the values of x such that the function becomes equal to zero, so these are exactly the same thing as the solutions of a quadratic equation.
Concluding, yes, solutions, roots, x-intercepts, and zeros are the same thing.
If you want to learn more about quadratic functions, you can read:
brainly.com/question/1214333