Answer:
Option C. ![y=-\frac{1}{2}(2x-8)](https://tex.z-dn.net/?f=y%3D-%5Cfrac%7B1%7D%7B2%7D%282x-8%29)
Step-by-step explanation:
we know that
If a system of two linear equations has an infinite number of solutions, then both equations must be identical
The given equation is
![y=-x+4](https://tex.z-dn.net/?f=y%3D-x%2B4)
<u><em>Verify each case</em></u>
Option A. we have
![y=-4(x+1)](https://tex.z-dn.net/?f=y%3D-4%28x%2B1%29)
apply distributive property
![y=-4x-4](https://tex.z-dn.net/?f=y%3D-4x-4)
Compare with the given equation
![-x+4 \neq -4x-4](https://tex.z-dn.net/?f=-x%2B4%20%5Cneq%20-4x-4)
Option B. we have
![y=-(x+4)](https://tex.z-dn.net/?f=y%3D-%28x%2B4%29)
remove the parenthesis
![y=-x-4](https://tex.z-dn.net/?f=y%3D-x-4)
Compare with the given equation
![-x+4 \neq -x-4](https://tex.z-dn.net/?f=-x%2B4%20%5Cneq%20-x-4)
Option C. we have
![y=-\frac{1}{2}(2x-8)](https://tex.z-dn.net/?f=y%3D-%5Cfrac%7B1%7D%7B2%7D%282x-8%29)
apply distributive property
![y=-x+4](https://tex.z-dn.net/?f=y%3D-x%2B4)
Compare with the given equation
![-x+4=-x+4](https://tex.z-dn.net/?f=-x%2B4%3D-x%2B4)
therefore
This equation with the given equation form a system that has an infinite number of solutions
Option D. we have
![y=x+4](https://tex.z-dn.net/?f=y%3Dx%2B4)
Compare with the given equation
![-x+4 \neq x+4](https://tex.z-dn.net/?f=-x%2B4%20%5Cneq%20x%2B4)