Answer:
velocity at the top: 0 m/s
acceleration at the top: -9.8 m/s²
Explanation:
Assuming up is positive and down is negative;
The velocity of the ball at the top of its path will be 0 m/s and the acceleration will be negative.
The velocity is 0 m/s because the ball does not move at the top of its path, and it switches from a positive velocity to a negative velocity. It must go through 0 in order to go from positive to negative.
The acceleration, however, is always negative no matter where the ball is in its motion. This negative acceleration causes the ball to slow down as it reaches the top, and speed up as it reaches the bottom.
<u>Think about it:</u> If there wasn't a negative acceleration, and it was instead 0, the ball would never come back down and instead keep going in a straight line.
Answer:
A. potential energy is 258720 Joule
Explanation:
A.Gravitational potential energy is: PE = m × g × h
velocity = 15.33 m/s when the car reaches the bottom of the hill.
where, m = mass
g = acceleration due to gravity
h = height from the bottom of hill.
The potential energy is : m×g×h
=(2200×9.8×12)
=258720 Joule
B. at the bottom of the hill, the potential energy is converted into kinetic energy so PE at top = KE at bottom
kinetic energy=
(
)
where v = velocity
m= mass
therefore, v=
or, v=
or, v=15.33 m/s
Barium cation has +2 charge and oxide anion has −2 charge
If Juan used a Celsius thermometer, it would tell him the Celsius temperature.
If he added 273 to that number, he'd have the "absolute" or Kelvin temperature.