r = distance of moon from earth = 3.84 x 10⁸ m
R = size of the object on moon = 0.67 m
D = diameter of the lens = ?
= wavelength of light = 550 x 10⁻⁹ m
Using the equation for Rayleigh criterion
R/r = 1.22
/D
inserting the values
0.67/(3.84 x 10⁸) = 1.22 (550 x 10⁻⁹) /D
D = 384.6 m
Answer: 6.175 km
Explanation:
from the question, we have the following
velocity of the automobile = 95 km/g
velocity of the train = 75 km/h
length of the train = 1.30 km
since the automobile and the train are moving in the same direction, we need to find the velocity of the car relative to the train which will be their difference in speed = 95 - 75 = 20 km/h
we need to find the time it takes the automobile to overtake the train using the formula time = distance / speed , with the distance being the length of the train.
time (t) = 1.3 / 20
= 0.065 hour
now we can find the distance traveled by the automobile using the the time taken for it to overtake the train and the speed of the automobile.
therefore, distance = speed x time
distance = 95 x 0.065 =6.175 km
Answer: Because the hunter will try to aim at the fish, but the image of fish he sees is actually the apparent image of the fish at a location.
Heres an image to help
Hope this helps!
Kinetic energy because the ball is in motion or moving with energy behind it... kinda like when you shoot a gun, the bullet is fired out of the muzzle with kinetic energy ( Punch ) and the bullet goes through a wall or something. Sorry but my math skills aren't very good to give complex calculations but I would recommend that you maybe talk to some of the top ranking math guys on the website. Maybe they can give you better help...
Anyways, I hope I have been helpful to you.