1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gayaneshka [121]
3 years ago
13

The per-unit impedance of a single-phase electric load is 0.3. The base power is 500 kVA, and the base voltage is 13.8 kV. a. Fi

nd the per-unit impedance of the load if 1 MVA and 24 kV are selected as base values. b. Find the ohmic value of the impedance.
Physics
1 answer:
Leto [7]3 years ago
8 0

Answer:

114.26

Explanation:

a)Formula for per unit impedance for change of base is

Zpu2= Zpu1×(kV1/kV2)²×(kVA2/kVA1)

Zpu2: New per unit impedance

Zpu1: given per unit impedance

kV1: give base voltage

kV2: New bas votlage

kVA1: given bas power

kVA2: new base power

In the question

Zpu2=??

Zpu1= 0.3

kV2=24kV

kV1= 13.8 kV

kVA2= 1MVA ×1000= 1000 kVA

kVA1=500kVA

Zpu2= 0.3(13.8/24)²×(1000/500)

Zpu2= 0.198

b) to find ohmic impedance we will first calculate base value of impedance(Zbase). So,

Zbase= kV²/MVA

  Zbase= 13.8²/(500/1000)

  Zbase=380.88

Now that we have base value of impedance, Zbase, we can calculate actual ohmic value of impedance(Zactual) by using the following formula:

Zpu=Zactual/Zbase

0.3= Zactual/380.88

Zactual= 114.26 ohms

You might be interested in
Define in own words.
nevsk [136]
Antioxidant are compounds found in foods..they help to prevent damage of the cell
8 0
3 years ago
I’m not sure how to solve this
spayn [35]

Answer:

Option 10. 169.118 J/KgºC

Explanation:

From the question given above, the following data were obtained:

Change in temperature (ΔT) = 20 °C

Heat (Q) absorbed = 1.61 KJ

Mass of metal bar = 476 g

Specific heat capacity (C) of metal bar =?

Next, we shall convert 1.61 KJ to joule (J). This can be obtained as follow:

1 kJ = 1000 J

Therefore,

1.61 KJ = 1.61 KJ × 1000 J / 1 kJ

1.61 KJ = 1610 J

Next, we shall convert 476 g to Kg. This can be obtained as follow:

1000 g = 1 Kg

Therefore,

476 g = 476 g × 1 Kg / 1000 g

476 g = 0.476 Kg

Finally, we shall determine the specific heat capacity of the metal bar. This can be obtained as follow:

Change in temperature (ΔT) = 20 °C

Heat (Q) absorbed = 1610 J

Mass of metal bar = 0.476 Kg

Specific heat capacity (C) of metal bar =?

Q = MCΔT

1610 = 0.476 × C × 20

1610 = 9.52 × C

Divide both side by 9.52

C = 1610 / 9.52

C = 169.118 J/KgºC

Thus, the specific heat capacity of the metal bar is 169.118 J/KgºC

6 0
3 years ago
Which two criteria are least important for engineers to consider when developing a process to produce sulfur trioxide? A. The pr
VikaD [51]

Answer: it should be c and d

Explanation:

4 0
3 years ago
Read 2 more answers
WHICH ONE!!! ASAP FOR A RETAKE FOR SCIENCE PLS
aleksandr82 [10.1K]
I’m 95% sure it’s covalent bonds.
8 0
3 years ago
A drowsy cat spots a flowerpot that sails first up and then down past an open window. the pot was in view for a total of 0.49 s,
Alika [10]

For this case, let's assume that the pot spends exactly half of its time going up, and half going down, i.e. it is visible upward for 0.245 s and downward for 0.245 s. Let us take the bottom of the window to be zero on a vertical axis pointing upward. All calculations will be made in reference to this coordinate system. <span>

An initial condition has been supplied by the problem: 

s=1.80m when t=0.245s 

<span>This means that it takes the pot 0.245 seconds to travel upward 1.8m. Knowing that the gravitational acceleration acts downward constantly at 9.81m/s^2, and based on this information we can use the formula:

s=(v)(t)+(1/2)(a)(t^2) 

to solve for v, the initial velocity of the pot as it enters the cat's view through the window. Substituting and solving (note that gravitational acceleration is negative since this is opposite our coordinate orientation): 

(1.8m)=(v)(0.245s)+(1/2)(-9.81m/s^2)(0.245s)^2 

v=8.549m/s 

<span>Now we know the initial velocity of the pot right when it enters the view of the window. We know that at the apex of its flight, the pot's velocity will be v=0, and using this piece of information we can use the kinematic equation:

(v final)=(v initial)+(a)(t) 

to solve for the time it will take for the pot to reach the apex of its flight. Because (v final)=0, this equation will look like 

0=(v)+(a)(t) 

Substituting and solving for t: 

0=(8.549m/s)+(-9.81m/s^2)(t) 

t=0.8714s 

<span>Using this information and the kinematic equation we can find the total height of the pot’s flight:

s=(v)(t)+(1/2)(a)(t^2) </span></span></span></span>

s=8.549m/s (0.8714s)-0.5(9.81m/s^2)(0.8714s)^2

s=3.725m<span>

This distance is measured from the bottom of the window, and so we will need to subtract 1.80m from it to find the distance from the top of the window: 

3.725m – 1.8m=1.925m</span>

 

Answer:

<span>1.925m</span>

3 0
3 years ago
Other questions:
  • A uniform marble rolls down a symmetric bowl, starting from rest at the top of the left side. The top of each side is a distance
    10·1 answer
  • Three kids are riding on a snow sled traveling horizontally without friction at 19.8 m/s. The masses of Kid A, B, and C are 42.8
    11·1 answer
  • Newly discovered planet has twice the mass and three times the radius of the earth. What is the free-fall acceleration at its su
    14·2 answers
  • Suppose you have a pendulum clock which keeps correct time on Earth(acceleration due to gravity = 1.6 m/s2). For ever hour inter
    5·1 answer
  • The atomic number tells how many _____ are in the nucleus
    7·1 answer
  • In the sum of 54.34 and 45.66, the number of significant figure for the<br>answer is​
    5·1 answer
  • Pendulum takes 1 second to move from x to y so it's frequency equal ​
    14·1 answer
  • What else is produced when sodium carbonate decomposes
    7·1 answer
  • The projectile launcher shown below will give the object on the right an initial horizontal speed of 5.9 m/s. While the other ob
    10·1 answer
  • According to one of the laws of thermodynamics, energy cannot be what?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!