A normal distribution is a type of continuous probability distribution for a real-valued random variable in statistics.
Yes, the large-sample confidence interval will be valid.
<h3>What is meant by normal distribution?</h3>
A normal distribution is a type of continuous probability distribution for a real-valued random variable in statistics.
The normal distribution, also known as the Gaussian distribution, is a symmetric probability distribution about the mean, indicating that data near the mean occur more frequently than data far from the mean.
The confidence interval will be valid regardless of the shape of the population distribution as long as the sample is large enough to satisfy the central limit theorem.
<h3>
What does a large sample confidence interval for a population mean?</h3>
A sample is considered large when n ≥ 30.
By 'valid', it means that the confidence interval procedure has a 95% chance of producing an interval that contains the population parameter.
To learn more about normal distribution, refer to:
brainly.com/question/23418254
#SPJ4
Answer:
Just took test, got it right. In the following:
Step-by-step explanation:
Scenarios:
A- Survey
B- Observation
C- Experiment
D- Survey
It would be 31+t.
Unless there's more to this question.
<em>HOPE</em><em> </em><em>THIS</em><em> </em><em>WILL</em><em> </em><em>HELP</em><em> </em><em>U</em><em>.</em><em>.</em><em>.</em>
Answer:
(a)Length =2 feet
(b)Width =2 feet
(c)Height=3 feet
Step-by-step explanation:
Let the dimensions of the box be x, y and z
The rectangular box has a square base.
Therefore, Volume of the box
Volume of the box

The material for the base costs
, the material for the sides costs
, and the material for the top costs
.
Area of the base 
Cost of the Base 
Area of the sides 
Cost of the sides=
Area of the Top 
Cost of the Base 
Total Cost, 
Substituting 

To minimize C(x), we solve for the derivative and obtain its critical point
![C'(x)=\dfrac{0.6x^3-4.8}{x^2}\\Setting \:C'(x)=0\\0.6x^3-4.8=0\\0.6x^3=4.8\\x^3=4.8\div 0.6\\x^3=8\\x=\sqrt[3]{8}=2](https://tex.z-dn.net/?f=C%27%28x%29%3D%5Cdfrac%7B0.6x%5E3-4.8%7D%7Bx%5E2%7D%5C%5CSetting%20%5C%3AC%27%28x%29%3D0%5C%5C0.6x%5E3-4.8%3D0%5C%5C0.6x%5E3%3D4.8%5C%5Cx%5E3%3D4.8%5Cdiv%200.6%5C%5Cx%5E3%3D8%5C%5Cx%3D%5Csqrt%5B3%5D%7B8%7D%3D2)
Recall: 
Therefore, the dimensions that minimizes the cost of the box are:
(a)Length =2 feet
(b)Width =2 feet
(c)Height=3 feet