Answer : The final temperature is, 
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of ice = 
= specific heat of water = 
= mass of ice = 50 g
= mass of water = 200 g
= final temperature = ?
= initial temperature of ice = 
= initial temperature of water = 
Now put all the given values in the above formula, we get:


Therefore, the final temperature is, 
Complete Question:
The elastic energy stored in your tendons can contribute up to 35 % of your energy needs when running. Sports scientists have studied the change in length of the knee extensor tendon in sprinters and nonathletes. They find (on average) that the sprinters' tendons stretch 43 mm , while nonathletes' stretch only 32 mm . The spring constant for the tendon is the same for both groups,
. What is the difference in maximum stored energy between the sprinters and the nonathlethes?
Answer:

Explanation:
Sprinters' tendons stretch, 
Non athletes' stretch, 
Spring constant for the two groups, k = 31 N/mm = 3100 N/m
Maximum Energy stored in the sprinter, 
Maximum energy stored in the non athletes, 
Difference in maximum stored energy between the sprinters and the non-athlethes:

Dang dude you are a soldier! Good job
Answer:
In bringing you to a halt, the sand and the water exert the same impulse on you, but the sand exerts a greater average force
Explanation:
Answer:
520 miles per hour
Explanation:
Let the speed of the Boeing 747 be x miles per hour.
The small airplane covers distance of 780 miles with speed 260 miles per hour.
Also,
After 1.5 hours the Boeing 747 leave the same place and reaches at same time. Both covered distance of 780 miles.
So,
<u>Time taken by Boeing 747 + 1.5 hours = Time taken by small plane.</u>
Also,
Time = Distance/ speed
So,
780 / x + 1.5 = 780/ 260
Solving for x, we get:
<u>x = 520 miles per hour</u>