Deltas are complex depositional landforms that develop at the mouths of rivers. They are composed of sediment that is deposited as a river enters a standing body of water and loses forward momentum. Famous deltas include the Mississippi delta in Louisiana and the Nile delta in Egypt.
The solution would be like this for this specific problem:
Given:
diffraction grating
slits = 900 slits per centimeter
interference pattern that
is observed on a screen from the grating = 2.38m
maxima for two different
wavelengths = 3.40mm
slit separation .. d =
1/900cm = 1.11^-3cm = 1.111^-5 m <span>
Whenas n = 1, maxima (grating equation) sinθ = λ/d
Grant distance of each maxima from centre = y ..
<span>As sinθ ≈ y/D y/D =
λ/d λ = yd / D </span>
∆λ = (λ2 - λ1) = y2.d/D - y1.d/D
∆λ = (d/D) [y2 -y1]
<span>∆λ = 1.111^-5m x [3.40^-3m] / 2.38m .. .. ►∆λ = 1.587^-8 m</span></span>
Answer:
A or B you choose
Explanation:
This is called current electricity or an electric current. A lightning bolt is one example of an electric current, although it does not last very long. Electric currents are also involved in powering all the electrical appliances that you use, from washing machines to flashlights and from telephones to MP3 players.
what is an electrical current, amp, ampere Current is the flow of electrons. When a circuit is closed then a current of electrons can flow and when a circuit is open then no current can flow. We can measure the flow of electrons just like you can measure the flow of water through a pipe.
Answer: 1339.5 joules
Explanation:
Gravitational potential energy, GPE is the energy possessed by the jumper as he moves against gravity.
Thus, GPE = Mass m x Acceleration due to gravity g x Height h
Since Mass = 67kg
g = 9.8m/s^2
h = 2.04 metres
Thus, GPE = 67kg x 9.8m/s^2 x 2.04m
GPE = 1339.5 joules
Thus, the gravitational potential energy at the highest point is 1339.5 joules
Answer:
Current, I = 2.3 A
Explanation:
We have,
Voltage of the battery in a circuit is 9 volts
Resistance of the circuit is 4 ohms
It is required to find the current in a circuit. When the voltage and the resistance of the circuit is given then we can find the current in it is given by Ohm's law as :

I is electric current

or
I = 2.3 A
So, the current in the circuit is 2.3 A.