1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aksik [14]
3 years ago
5

You are standing at rest at a bus stop. A bus moving at a constant speed of 5.00 mm/???????? passes you. When the rear of the bu

s is12.0 mm past you, you realize that it is your bus, so you start to run toward it with a constant acceleration of 0.960 mm????????2. How far would you have to run before you catch up with the rear of the bus, and how fast must you be running then?
Physics
2 answers:
dedylja [7]3 years ago
7 0

Answer:

You have to run 73.8 m at a speed of 11.9 m/s

Explanation:

The equation for the position of an accelerated object moving in a straight line is as follows:

x = x0 + v0 · t + 1/2 · a · t²

where:

x = position at time t

x0 = initial position

v0 = initial speed

t = time

a = acceleration

If the object has no acceleration, then, a = 0 and x = x0 + v · t, where v is the constant velocity.

When you catch the rear of the bus, its position and yours will be the same:

your position = position of the bus

x0 + v0 · t + 1/2 · a · t² = x0 + v · t

since you start from rest and the origin of the reference system is located at the point where you start running, x0 and v0 = 0.

The initial position of the bus will be 12.0 m because this was its position relative to you when you started running. Then:

1/2 · 0.960 m/s² · t² = 12.0 m + 5.00 m/s · t

0.480 m/s² · t² - 5.00 m/s · t - 12.0 m = 0

solving this quadratic equation:

t = 12.4 s   (The other solution is negative and therefore discarded)

Now, with this time, we can calculate your position:

x = 1/2 · a · t²

x = 1/2 · 0.960 m/s² · (12.4 s)² = 73.8 m

Your speed can be calculated with the equation for speed:

v = v0 + a · t

Since v0 = 0

v = a · t

v = 0.960 m/s² · 12.4 s = 11.9 m/s (really fast!)

neonofarm [45]3 years ago
3 0

Answer:

You run 74.1409 mm and you are running at 11.9311 mm/s

Explanation:

If the bus is moving at a constant speed of 5.00mm/s and you start to run when the bus pass you by 12 mm, the equation that describe the position of the bus is:

Xb = 12.0 mm + (5.00 mm/s)*t

Where t is the time in seconds.

If you start to run toward it with a constant acceleration of 0.960 mm/s2, the equation that describe your position is:

X_y=\frac{1}{2} (0.960\frac{mm}{s^{2}})*t^{2}

So, the time t when you catch up the rear of the bus is the time when Xb is equal to Xy. This is:

X_b=X_y\\12+5t=\frac{1}{2} 0.960t^{2} \\0.48t^{2}-5t-12=0

Then, solving the quadratic equation, we obtain that t is equal to 12.4282 s

So, if we replace this value of t in the equation of Xy, we obtain how far you have run before you catch up with the rear of the bus. This is:

X_y=\frac{1}{2} (0.960\frac{mm}{s^{2}})*12.4282^{2}

Xy = 74.1409 mm

Then, the equation of your velocity a time t can be write as:

Vy=0.960\frac{mm}{s^{2} }*t

So, the velocity when you catch up the rear of the bus is:

Vy=0.960\frac{mm}{s^{2} }*12.4282s

Vy = 11.9311 mm/s

You might be interested in
Which planet, when viewed through a telescope, appears as a reddish ball interrupted by some permanent dark regions that change
Andrej [43]
The answer should be Mars. 
4 0
3 years ago
Read 2 more answers
A monochromatic light beam is incident on a barium target that has a work function of 2.50 \mathrm{eV} . If a potential differen
leva [86]

The wavelength of the light beam required to turn back all the ejected electrons is 497 nm which is option (b).

  • Work function is a material property defined as the minimum amount of energy  required to infinitely remove electrons from the surface of a particular solid.
  • The potential difference required to support all emitted electrons is called the stopping potential which is given by v_0=\frac{K.E_m_a_x}{e} .....(1)
  • where v_0 is the stopping potential and e is the charge of the electron given by 1.6\times10^-^1^9 .

It is given that work function (Ф) of monochromatic light is 2.50 eV.

Einstein photoelectric equation  is given by:

K.E_m_a_x=E-\phi      ....(2)

where K.E(max) is the maximum kinetic energy.

Substituting (1) into (2) , we get

  ev_0=E-\phi\\1.6\times10^{-19} \times1=E-2.50\\E=1.6\times10^{-19}+2.50\\E=2.50eV

As we know that E=\frac{hc}{\lambda}  ....(3)

where Speed of light,c = 3\times10^8 m/s and Planck's constant , h = 6.63\times 10^-^1^9Js = 4.14\times 10^-^1^5 eVs

From equation (3) , we get

\lambda=\frac{hc}{E} \\\\\lambda=\frac{  4.14\times 10^-^1^5 \times 3 \times10^8}{2.50} \\\\\lambda=\frac{1240\times10^-^9}{2.50} \\\\\lambda=496.8\times10^-^9\\\\\lambda=497nm

Learn about more einstein photoelectric equation  here:

brainly.com/question/11683155

#SPJ4

8 0
1 year ago
Which of the following examples illustrates static friction?
vivado [14]

Answer:

A box sits stationary  on a ramp

Explanation:

Static friction is a force which keeps an object at rest as it is in the case of the box. It has to be overcome for the object to be set into motion.

Static force of friction is calculated as follows:

F= μη

F is static force of friction.

μ is the coefficient of static friction.

η is the normal force.

6 0
3 years ago
640 nanometer setara dengan​
lidiya [134]

Answer:

640 nanometer setara dengan​ 6.4e-7 meter

7 0
2 years ago
The radius of the planent venus is nearly the same as that of the earth,but its mass is only eighty percent that of the earth. I
oee [108]
Weight=mg
g=GM/r^2
g on venus is 0.80w as radius is kept constant
m of object is kept constant
w α g
w(venus( is 0.8w

7 0
3 years ago
Read 2 more answers
Other questions:
  • An engine uses 5280 j of input heat to do 702 j of work.how much heat is rejected into the air
    13·1 answer
  • When nonmetals bond with other atoms, what usually happens?
    5·1 answer
  • What type of front usually brings thunder clouds and storms
    12·2 answers
  • A 0.300 kg potato is tied to a string with length 2.30 m , and the other end of the string is tied to a rigid support. The potat
    14·1 answer
  • A disk of mass m and moment of inertia of I is spinning freely at 6.00 rad/s when a second identical disk, initially not spinnin
    11·1 answer
  • A 5 kg brick is dropped from a height of 12m on a spring with a spring constant 8 kN/m. If the spring has unstretched length of
    15·1 answer
  • A 50N girl pushes a 10,000 N car with force of 200N. What is the force the car pushes back at the girl? *
    15·1 answer
  • A laser emits a light beam with a wavelength of 630 nm. The jet passes a liquid with a refractive index of 1.3.
    12·1 answer
  • Suppose that a simple pendulum consists of a small 60.0 g bob at the end of a cord of negligible mass. If the angle 0 between th
    13·1 answer
  • Two microphones are connected to a
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!