Answer:
Explanation:
Given that
Mass of 1 = 
Mass of 2 = 
Temperature in 1 = 
Temperature in 2 = 
Pressure remains i the group apartment
The closed system and energy balance is

The kinetic energy and potential energy are negligible
since it is insulated tank ,there wont be eat transfer from the system
And there is no work involved

Let the final temperature be final temperature

Using mass balance

from eqn i

Therefore the final temperature can be express as

Leading/trailing shoe type drum brake This is called the servo effect (self-boosting effect) which realizes the powerful braking forces of drum brakes. ... This is because drum brakes generate the same braking force in either direction. Generally, this type is used for the rear brakes of passenger cars.
Answer:
D) 1.04 Btu/s from the liquid to the surroundings.
Explanation:
Given that:
flow rate (m) = 2 lb/s
liquid specific enthalpy at the inlet (
Btu/lb)
liquid specific enthalpy at the exit (
Btu/lb)
initial elevation (
)
final elevation (
)
acceleration due to gravity (g) = 32.174 ft/s²
= 3 Btu/s
The energy balance equation is given as:
![Q_{cv}-W{cv}+m[(h_1-h_2)+(\frac{V_1^2-V_2^2}{2})+g(z_1-z_2)]=0](https://tex.z-dn.net/?f=Q_%7Bcv%7D-W%7Bcv%7D%2Bm%5B%28h_1-h_2%29%2B%28%5Cfrac%7BV_1%5E2-V_2%5E2%7D%7B2%7D%29%2Bg%28z_1-z_2%29%5D%3D0)
Since kinetic energy effects are negligible, the equation becomes:
![Q_{cv}-W{cv}+m[(h_1-h_2)+g(z_1-z_2)]=0](https://tex.z-dn.net/?f=Q_%7Bcv%7D-W%7Bcv%7D%2Bm%5B%28h_1-h_2%29%2Bg%28z_1-z_2%29%5D%3D0)
Substituting values:
![Q_{cv}-(-3)+2[(40.09-40.94)+\frac{32.174(0-100)}{778*32.174} ]=0\\Q_{cv}+3+2[-0.85-0.1285 ]=0\\Q_{cv}+3+2(-0.9785)=0\\Q_{cv}+3-1.957=0\\Q_{cv}+1.04=0\\Q_{cv}=-1.04\\](https://tex.z-dn.net/?f=Q_%7Bcv%7D-%28-3%29%2B2%5B%2840.09-40.94%29%2B%5Cfrac%7B32.174%280-100%29%7D%7B778%2A32.174%7D%20%5D%3D0%5C%5CQ_%7Bcv%7D%2B3%2B2%5B-0.85-0.1285%20%5D%3D0%5C%5CQ_%7Bcv%7D%2B3%2B2%28-0.9785%29%3D0%5C%5CQ_%7Bcv%7D%2B3-1.957%3D0%5C%5CQ_%7Bcv%7D%2B1.04%3D0%5C%5CQ_%7Bcv%7D%3D-1.04%5C%5C)
The heat transfer rate is 1.04 Btu/s from the liquid to the surroundings.