Answer:
15,000 psi
Explanation:
The solution / solving is attach below.
Answer:
critical stress = 595 MPa
Explanation:
given data
fracture toughness = 74.6 MPa-
crack length = 10 mm
f = 1
solution
we know crack length = 10 mm
and crack length = 2a as given in figure attach
so 2a = 10
a = 5 mm
and now we get here with the help of plane strain condition , critical stress is express as
critical stress =
......................1
put here value and we get
critical stress =
critical stress = 595 MPa
so here stress is change by plane strain condition because when plate become thinner than condition change by plane strain to plain stress.
plain stress condition occur in thin body where stress through thickness not vary by the thinner section.
Answer:
The specific weight of unknown liquid is found to be 15 KN/m³
Explanation:
The total pressure in tank is measured to be 65 KPa in the tank. But, the total pressure will be equal to the sum of pressures due to both oil and unknown liquid.
Total Pressure = Pressure of oil + Pressure of unknown liquid
65 KPa = (Specific Weight of oil)(depth of oil) + (Specific Weight of unknown liquid)(depth of unknown liquid)
65 KN/m² = (8.5 KN/m³)(5 m) + (Specific Weight of Unknown Liquid)(1.5 m)
(Specific Weight of Unknown Liquid)(1.5 m) = 65 KN/m² - 42.5 KN/m²
(Specific Weight of Unknown Liquid) = (22.5 KN/m²)/1.5 m
<u>Specific Weight of Unknown Liquid = 15 KN/m³</u>
Answer: The exit temperature of the gas in deg C is
.
Explanation:
The given data is as follows.
= 1000 J/kg K, R = 500 J/kg K = 0.5 kJ/kg K (as 1 kJ = 1000 J)
= 100 kPa, 

We know that for an ideal gas the mass flow rate will be calculated as follows.

or, m = 
=
= 10 kg/s
Now, according to the steady flow energy equation:




= 5 K
= 5 K + 300 K
= 305 K
= (305 K - 273 K)
= 
Therefore, we can conclude that the exit temperature of the gas in deg C is
.
Answer:
Magnitude of velocity=10.67 m/s
Magnitude of acceleration=24.62 ft/
Explanation:
The solution of the problem is given in the attachments