Answer:
wrong
Step-by-step explanation:
(a+b)^2=(a+b)(a+b)
=a(a+b)b(a+b)
=a^2+ab+ab+b^2
=a^2+2ab+b^2
i hope it helps you
<span><span> y2(q-4)-c(q-4)</span> </span>Final result :<span> (q - 4) • (y2 - c)
</span>
Step by step solution :<span>Step 1 :</span><span>Equation at the end of step 1 :</span><span><span> ((y2) • (q - 4)) - c • (q - 4)
</span><span> Step 2 :</span></span><span>Equation at the end of step 2 :</span><span> y2 • (q - 4) - c • (q - 4)
</span><span>Step 3 :</span>Pulling out like terms :
<span> 3.1 </span> Pull out q-4
After pulling out, we are left with :
(q-4) • (<span> y2</span> * 1 +( c * (-1) ))
Trying to factor as a Difference of Squares :
<span> 3.2 </span> Factoring: <span> y2-c</span>
Theory : A difference of two perfect squares, <span> A2 - B2 </span>can be factored into <span> (A+B) • (A-B)
</span>Proof :<span> (A+B) • (A-B) =
A2 - AB + BA - B2 =
A2 <span>- AB + AB </span>- B2 =
<span> A2 - B2</span>
</span>Note : <span> <span>AB = BA </span></span>is the commutative property of multiplication.
Note : <span> <span>- AB + AB </span></span>equals zero and is therefore eliminated from the expression.
Check : <span> y2 </span>is the square of <span> y1 </span>
Check :<span> <span> c1 </span> is not a square !!
</span>Ruling : Binomial can not be factored as the difference of two perfect squares
Final result :<span> (q - 4) • (y2 - c)
</span><span>
</span>
I think this is the answer :)
Answer:
Amount she would have in 2 years at a simple interest of is
$5000 + ($5000 x 0.048 x 2) = $5480
Amount she would have in 2 years at a 4.1 % / year compounded semi- annually is :
$5000 x ( 1 +0.041/2)^4 = $5422.78
the first option yields a higher value in two years when compared with the second option. Thus, the first option is the best one to choose
Step-by-step explanation:
Future value with simple interest = principal + interest
Interest = principal x interest rate x time
0.048 x 5000 x 2 = 480
future value = $480 + 5000 = $5480
The formula for calculating future value with compounding:
FV = P (1 + r)^nm
FV = Future value
P = Present value
R = interest rate
m = number of compounding
N = number of years
5000 x ( 1 + 0.041 / 2)^(2 x 2) = $5422.78