Ok, so it seems to be the square root of the cube root of 2
we just convert to exponential
remember

and
![\sqrt[n]{x^m} =x^ \frac{m}{n}](https://tex.z-dn.net/?f=%20%5Csqrt%5Bn%5D%7Bx%5Em%7D%20%3Dx%5E%20%5Cfrac%7Bm%7D%7Bn%7D%20)
therfor
![\sqrt{ \sqrt[3]{2} }= \sqrt{2^ \frac{1}{3} } =( 2^ \frac{1}{3})^ \frac{1}{2} =2^ \frac{1}{6}](https://tex.z-dn.net/?f=%20%5Csqrt%7B%20%5Csqrt%5B3%5D%7B2%7D%20%7D%3D%20%5Csqrt%7B2%5E%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%3D%28%202%5E%20%5Cfrac%7B1%7D%7B3%7D%29%5E%20%5Cfrac%7B1%7D%7B2%7D%20%3D2%5E%20%5Cfrac%7B1%7D%7B6%7D%20%20)
last choice is correct
Answer:
see below
Step-by-step explanation:
8x and 56 are not like terms
x is a variable and 56 is a constant
8x can be added to 56 but they cannot be combined together into one term
8x+56 cannot be combined because they are not like terms
Answer:
B
Step-by-step explanation:
8/33 = 0.24242424 ...
so 6.24 repeating = 6 8/33 which is rational. It can be represented by
206/33 which is a fraction and hence rational
<u>Differentiate using the Quotient Rule</u> –

![\pink{\twoheadrightarrow \sf \dfrac{d}{dx} \bigg[\dfrac{f(x)}{g(x)} \bigg]= \dfrac{ g(x)\:\dfrac{d}{dx}\bigg[f(x)\bigg] -f(x)\dfrac{d}{dx}\:\bigg[g(x)\bigg]}{g(x)^2}}\\](https://tex.z-dn.net/?f=%5Cpink%7B%5Ctwoheadrightarrow%20%5Csf%20%5Cdfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%5Cdfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%20%5Cbigg%5D%3D%20%5Cdfrac%7B%20g%28x%29%5C%3A%5Cdfrac%7Bd%7D%7Bdx%7D%5Cbigg%5Bf%28x%29%5Cbigg%5D%20-f%28x%29%5Cdfrac%7Bd%7D%7Bdx%7D%5C%3A%5Cbigg%5Bg%28x%29%5Cbigg%5D%7D%7Bg%28x%29%5E2%7D%7D%5C%5C)
According to the given question, we have –
- f(x) = x^3+5x+2
- g(x) = x^2-1
Let's solve it!

![\green{\twoheadrightarrow \bf \dfrac{d}{dx}\bigg[ \dfrac{x^3+5x+2 }{x^2-1}\bigg]} \\](https://tex.z-dn.net/?f=%5Cgreen%7B%5Ctwoheadrightarrow%20%5Cbf%20%5Cdfrac%7Bd%7D%7Bdx%7D%5Cbigg%5B%20%5Cdfrac%7Bx%5E3%2B5x%2B2%20%7D%7Bx%5E2-1%7D%5Cbigg%5D%7D%20%5C%5C)













