Answer:
13.5g of AgNO3 will be needed
Explanation:
Silver nitrate, AgNO3 contains 1 mole of silver, Ag, per mole of nitrate. To solve this problem we need to convert the mass of Ag to moles. Thee moles = Moles of AgNO3 we need. With the molar mass of AgNO3 we can find the needed mass:
<em>Moles Ag-Molar mass: 107.8682g/mol-</em>
8.6g * (1mol / 107.8682g) = 0.0797 moles Ag = Moles AgNO3
<em>Mass AgNO3 -Molar mass: 169.87g/mol-</em>
0.0797 moles Ag * (169.87g/mol) =
<h3>13.5g of AgNO3 will be needed</h3>
Answer:
im pretty sure its A, if not so sorry!!
Explanation:
The mantle has a mass of around
that is around 68.4% of earth's mass.
So to calculate moles we need to first find out the mass of oxygen and silicon present in mantle. It is given that oxygen is 44.8% by mass in mantle and 21.5% by mass in mantle, therefore to calculate its mass, we need to use 
Now, to calculate mass percentage of oxygen


Similarly the mass of silicon can be calculated

Now, the moles of any substance is calculated by


where, mass of oxygen in kilograms is 
So,
Similarly 

Now, to calculate mole ratio we need to divide every moles to the lowest calculated mole that is the moles of Si and round it off to the nearest whole number.





Explanation:
Kinetic energy is defined as the energy obtained by an object due to its motion. Whereas energy obtained by an object due to its position is known as potential energy.
(a) When a sled is resting at the top of a hill then it means the sled in not moving. Hence, then it has only potential energy. But when a sled sliding down the hill then it is moving from its initial position.
Hence, when a sled is sliding down the hill then it has higher kinetic energy.
(b) When water is above the dam then it only has potential energy but when the water falls over the dam then it has higher kinetic energy.
Answer:

Explanation:
1. Calculate the rate constant
The integrated rate law for first order decay is

where
A₀ and A_t are the amounts at t = 0 and t
k is the rate constant

2. Calculate the half-life
