1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
anygoal [31]
3 years ago
11

Which bond is least polar? As-Cl, Bi-Cl, P-Cl, N-Cl

Chemistry
1 answer:
Lady_Fox [76]3 years ago
3 0
Uhh don't know about that
You might be interested in
Describe three findings of the Human Genome Project<br> Write it in your own words
nata0808 [166]

Answer:

The biggest known human gene, is made up of about 2.4 million bases. The Human Genome Project also gave us more detailed information about chromosomes. It turns out that chromosome 1 contains the most genes, while the Y chromosome has the fewest.

Explanation:

3 0
3 years ago
A mixture of 75 mole% methane and 25 mole% hydrogen is burned with 25% excess air. Fractional conversions of 90% of the methane
son4ous [18]

Solution :

Consider a mixture of methane and hydrogen.

Take the basis as 100 moles of the mixture.

The mixture contains 75% of methane and 25% of hydrogen by mole and it is burned with 25% in excess air.

Moles of methane = 0.75 x 100

Moles of hydrogen = 0.25 x 100

The chemical reactions involved during the reaction are :

$CH_4+2O_2 \rightarrow CO_2 + 2H_2O$

$CH_4+1.5O_2 \rightarrow CO+2H_2O$

$H_2+0.5O_2 \rightarrow H_2O$

The fractional conversion of methane is 90%

Number of moles of methane burned during the reaction is = 0.9 x 75

                                                                                                   = 67.5

Moles of methane leaving = initial moles of methane - moles of methane burned

                                           = 75 - 67.5

                                           = 7.5 moles

Fractional conversion of hydrogen is 85%

The number of moles of hydrogen burned during the reaction is = 0.85 x 25

                                                                                                   = 21.25

Moles of hydrogen leaving = initial moles of hydrogen - moles of hydrogen burned

                                           = 25 - 21.25

                                           = 3.75 moles

Methane undergoing complete combustion is 95%.

$CO_2$ formed is = 0.95 x 67.5

                       = 64.125 moles

$CO$ formed is = 0.05 x 67.5

                       = 3.375 moles

Oxygen required for the reaction is as follows :

From reaction 1, 1 mole of the methane requires 2 moles of oxygen for the complete combustion.

Hence, oxygen required is = 2 x 75

                                            = 150 moles

From reaction 3, 1 mole of the hydrogen requires 0.5 moles of oxygen for the complete combustion.

Hence, oxygen required is = 0.5 x 25

                                            = 12.5 moles

Therefore, total oxygen is = 150 + 12.5 = 162.5 moles

Air is 25% excess.

SO, total oxygen supply = 162.5 x 1.25 = 203.125 moles

Amount of nitrogen = $203.125 \times \frac{0.79}{0.21} $

                                = 764.136 moles

Total oxygen consumed = oxygen consumed in reaction 1 + oxygen consumed in reaction 2 + oxygen consumed in reaction 3

Oxygen consumed in reaction 1 :

1 mole of methane requires 2 moles of oxygen for complete combustion

 = 2 x 64.125

 = 128.25 moles

1 mole of methane requires 1.5 moles of oxygen for partial combustion

= 1.5 x 3.375

= 5.0625 moles

From reaction 3, 1 mole of hydrogen requires 0.5 moles of oxygen

= 0.5 x 21.25

= 10.625 moles.

Total oxygen consumed = 128.25 + 5.0625 + 10.625

                                        = 143.9375 moles

Total amount of steam = amount of steam in reaction 1 + amount of steam in reaction 2 + amount of steam in reaction 3

Amount of steam in reaction 1 = 2 x 64.125 = 128.25 moles

Amount of steam in reaction 2 = 2 x 3.375 = 6.75 moles

Amount of steam in reaction 3  = 21.25 moles

Total amount of steam = 128.25 + 6.75 + 21.25

                                     = 156.25 moles

The composition of stack gases are as follows :

Number of moles of carbon dioxide = 64.125 moles

Number of moles of carbon dioxide = 3.375 moles

Number of moles of methane = 7.5 moles

Number of moles of steam = 156.25 moles

Number of moles of nitrogen = 764.136 moles

Number of moles of unused oxygen = 59.1875 moles

Number of moles of unused hydrogen = 3.75 moles

Total number of moles of stack  gas

= 64.125+3.375+7.5+156.25+764.136+59.1875+3.75

= 1058.32 moles

Concentration of carbon monoxide in the stack gases is

$=\frac{3.375}{1058.32} \times 10^6$

= 3189 ppm

b).  The amount of carbon monoxide in the stack gas can be decreased by increasing the amount of the excess air. As the amount of the excess air increases, the amount of the unused oxygen and nitrogen in the stack gases will increase and the concentration of CO will decrease in the stack gas.  

6 0
3 years ago
The ΔHsoln is _____.
nydimaria [60]

Sometimes negative sometimes positive, your answer is B!

4 0
3 years ago
Nickel is extracted from nickel oxide by reduction with carbon.
meriva

Answer:

Nickel is extracted from nickel oxide by reduction with carbon. Nickel is a metal which react with atmospheric oxygen which is very reactive in order to protect the inner surface of metal. Carbon extract oxygen which is attached to the nickel in the form of nickel oxide because carbon is more reactive so it made a chemical bonds with oxygen and nickel oxide is converted into a pure nickel.

3 0
3 years ago
The rms (root-mean-square) speed of a diatomic hydrogen molecule at 50∘c is 2000 m/s. Note that 1. 0 mol of diatomic hydrogen at
Leno4ka [110]

The rms speed will be 500 m/s

<h3>What is Root mean square speed ?</h3>

Root mean square speed (Vrms) is defined as the square root of the mean of the square of speeds of all molecules.

Root mean square speed (vrms) Root mean square speed (vrms) is defined as the square root of the mean of the square of speeds of all molecules

It is given that

Speed of a diatomic hydrogen molecule,2000 m/s

Mol of diatomic hydrogen,1.0

Temperature,50°C

The rms speed of diatomic molecule will be:

√(3KT)/( m)

The translational kinetic energy of a gas molecule is given as:

K.E = (3/2)KT

K.E = (1/2) mv²

where,

v = root mean square velocity

m = mass of one mole of a gas

(3/2)KT = (1/2) mv²

v = √(3KT)/m  

FOR H₂:  v = √(3KT)/m = 2000 m/s  

Here,

mass of 1 mole of oxygen = 16 m

velocity of oxygen = √(3KT)/(16 m)

velocity of oxygen = (1/4) √(3KT)/m

velocity of oxygen = (1/4)(2000 m/s) = 500 m/s

Therefore the  rms (root-mean-square) speed of a oxygen molecule at 50∘c is 500m/s.

To know more about Root mean square speed

brainly.com/question/7213287

#SPJ4

3 0
2 years ago
Other questions:
  • Using the following thermochemical data, what is the change in enthalpy for the following reaction: 3H2(g) + 2C(s) + ½O2(g) → C2
    14·2 answers
  • Which of the following best describes atoms? *
    10·1 answer
  • He best ultraviolet observations are made with space telescopes because A. the Sun blocks most ultraviolet light from distant st
    7·1 answer
  • The electrolysis of water forms H2 and O2.
    10·2 answers
  • Hydrogen cyanide, HCN, is prepared from ammonia, air, and natural gas (CH4) by the following process: Hydrogen cyanide is used t
    10·1 answer
  • What type of organic compounds are sugars and starches?
    7·2 answers
  • Count then plot the total number of atoms in the reactants to total atoms
    5·1 answer
  • Alligators are the large predators that eat many smaller animals in a swamp how might removing the alligators from a swamp habit
    7·1 answer
  • In an experiment, equal amounts of water and soil were first heated and then left to cool. The graph shows the change in tempera
    8·2 answers
  • Waves form when energy is transferred to ocean
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!