Explanation:
As a neutral lithium atom contains 3 protons and its elemental charge is given as
. Hence, we will calculate its number of moles as follows.
Moles = 
= 
= 100 mol
According to mole concept, there are
atoms present in 1 mole. So, in 100 mol we will calculate the number of atoms as follows.
No. of atoms = 
=
atoms
Since, it is given that charge on 1 atom is as follows.

= 
Therefore, charge present on
atoms will be calculated as follows.

Thus, we can conclude that a positive charge of
is in 0.7 kg of lithium.
I think it's covalent...? Hope that helps.
D, since it can hold up to 10 electrons
Answer:
what happens if i mix red with green?