The problem presents 2 variables and 2 conditions to follow to determine the approach in solving the problem. The variables are 52 cards, and 9 cards. The 2 conditions presented would be the teacher giving out one card to each student at a time to each student until all of them are gone. The second variable is more likely made as a clue and the important variable that gives away the approach to be used. The approach to be used is division. This is to ensure that there will be students receiving the 9 cards. Thus, we do it as this: 52 / 9 = ?
The answer would be 5.77778 (wherein 7 after the decimal point is infinite and 8 would just be the rounded of number). This would ensure us that there will be 5 students that can receive 9 cards but there will be 7 cards remaining which goes to the last student, which is supposed to be 8 since she gives one card to each student at a time to each student. So the correct answer would be just 4 students. The fifth student will only receive 8 cards and the last student would have 8, too.
Answer:
7 pounds is greater
Step-by-step explanation:
1 lb = 16 oz
7 lb = 112 oz
70 oz is 70 oz
well, we know is 10% for the first 7500, but Dan only made 5000 of taxable income, so he's in that range of 0 - 7500, so he only gets to pay 10% of 5000.

Answer:
Complete the following statements. In general, 50% of the values in a data set lie at or below the median. 75% of the values in a data set lie at or below the third quartile (Q3). If a sample consists of 500 test scores, of them 0.5*500 = 250 would be at or below the median. If a sample consists of 500 test scores, of them 0.75*500 = 375 would be at or above the first quartile (Q1).
Step-by-step explanation:
The median separates the upper half from the lower half of a set. So 50% of the values in a data set lie at or below the median, and 50% lie at or above the median.
The first quartile(Q1) separates the lower 25% from the upper 75% of a set. So 25% of the values in a data set lie at or below the first quartile, and 75% of the values in a data set lie at or above the first quartile.
The third quartile(Q3) separates the lower 75% from the upper 25% of a set. So 75% of the values in a data set lie at or below the third quartile, and 25% of the values in a data set lie at or the third quartile.
The answer is:
Complete the following statements. In general, 50% of the values in a data set lie at or below the median. 75% of the values in a data set lie at or below the third quartile (Q3). If a sample consists of 500 test scores, of them 0.5*500 = 250 would be at or below the median. If a sample consists of 500 test scores, of them 0.75*500 = 375 would be at or above the first quartile (Q1).