1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fynjy0 [20]
3 years ago
15

A house wife forgot her bank'Atm pin'which is a four digit number,but luckily she remembered some hints on how to recall this 'p

in'
Here are some of the clues.
1)The 1st digit is half the 2nd.
2)The sum of the 2nd and 3rd is 10.
3)The 4th is equal to the 2nd plus 1.
4)The sum of all the digits is 23.

What is the Atm pin?


please answer the questions with steps clearly staking out.
thanks​
Mathematics
1 answer:
Liono4ka [1.6K]3 years ago
6 0

Answer:

4829

Step-by-step explanation:

If the first digit is half of the second, that means the second is 2 times the first

So let's solve this algebraically...

The first digit could be called <em>a</em>

The second digit would have to be 2 times a (2a)

We can call the 3rd digit b

Since the sum of the second and third digit is 10, the equation would be this..

2x + b = 10, which is the same as b = 10 - 2x

The fourth digit is this equation

2x + 1

So the four digits are...

x, 2x, 10-2x, 2x+1

They are all equal to 23, which means...

x + 2x + 10-2x + 2x +1 = 23

After simplifying...

3x + 11 = 23

3x = 23 - 11

Which means...

3x = 12, x = 4

After you plug all that back into the prior equation you should get

first digit = 4 second digit = 8 third digit = 2 fourth digit = 9

Thank me later :)

(or just mark brainliest)

You might be interested in
If a person's eye level is h meters above sea level and he can see d kilometers to the horizon, then d=3.57h. Suppose the person
olga2289 [7]

Answer:

54.3m

Step-by-step explanation:

h = distance above sea level

d = distance he can sea above sea level

d = 3.57h

h = 15.21m

d = ?

d = 3.57 × 15.21

d = 54.2997m approximately 54.3m

The person can see up to a distance of 54.3m

6 0
3 years ago
Write an equation for each linear function described. Show your work. The graph of the function passes through the point (2,1),
svp [43]

Step-by-step explanation:

As

  • The graph of the function passes through the point (2,1), and
  • y increases by 4 when x increases by 1.

so

x             y

2             1

3             5

4             9

5             13

6             17

and so on

From the table:

\mathrm{Slope\:between\:two\:points}:\quad \mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}

\left(x_1,\:y_1\right)=\left(2,\:1\right),\:\left(x_2,\:y_2\right)=\left(3,\:5\right)

m=\frac{5-1}{3-2}

m=4

As the slope-intercept form of the line is

y=mx+b

putting m=4 and any point, let say (2, 1) to find y-intercept 'b'.

1=\left(4\right)2+b

8+b=1

8+b-8=1-8

b=-7

So putting b=-7 and m=4  in the slope-intercept form of the line

y=\left(4\right)x+\left(-7\right)

y=4x-7

Therefore, the equation for the linear function will be:

y=4x-7

8 0
3 years ago
I need help asap please!!!
Mashcka [7]
1. x = 118      2. x = -54      3. x = -54      4. x = -54

5 0
3 years ago
Write an Equation to show how angles are are related
dusya [7]

Hello,

Answer is <em>Alternate </em><em>interior </em><em>angles,</em><em> </em><em>as </em><em>they </em><em>lie </em><em>on </em><em>same </em><em>line </em><em>but </em><em>in </em><em>opposite </em><em>direction.</em><em>.</em><em>.</em>

<em>Hope</em><em> it</em><em> helps</em><em> you</em><em>.</em><em>.</em><em> </em><em>Pls</em><em> mark</em><em> brainliest</em>

8 0
3 years ago
Explain how to multiply the following whole numbers 21 x 14
Lesechka [4]

Answer:

\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}

________

\frac{\begin{matrix}\space\space&\textbf{0}&8&4\\ +&\textbf{2}&1&0\end{matrix}}{\begin{matrix}\space\space&\textbf{2}&9&4\end{matrix}}

Step-by-step explanation:

Given

21\:\times \:14

Line up the numbers

\begin{matrix}\space\space&2&1\\ \times \:&1&4\end{matrix}

Multiply the top number by the bottom number one digit at a time starting with the ones digit left(from right to left right)

Multiply the top number by the bolded digit of the bottom number

\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}

Multiply the bold numbers:    1×4=4

\frac{\begin{matrix}\space\space&2&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}}{\begin{matrix}\space\space&\space\space&4\end{matrix}}

Multiply the bold numbers:    2×4=8

\frac{\begin{matrix}\space\space&\textbf{2}&1\\ \times \:&1&\textbf{4}\end{matrix}}{\begin{matrix}\space\space&8&4\end{matrix}}

Multiply the top number by the bolded digit of the bottom number

\frac{\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&\textbf{1}&4\end{matrix}}{\begin{matrix}\space\space&8&4\end{matrix}}

Multiply the bold numbers:    1×1=1

\frac{\begin{matrix}\space\space&\space\space&2&\textbf{1}\\ \space\space&\times \:&\textbf{1}&4\end{matrix}}{\begin{matrix}\space\space&\space\space&8&4\\ \space\space&\space\space&1&\space\space\end{matrix}}

Multiply the bold numbers:    2×1=2

\frac{\begin{matrix}\space\space&\space\space&\textbf{2}&1\\ \space\space&\times \:&\textbf{1}&4\end{matrix}}{\begin{matrix}\space\space&\space\space&8&4\\ \space\space&2&1&\space\space\end{matrix}}

Add the rows to get the answer. For simplicity, fill in trailing zeros.

\frac{\begin{matrix}\space\space&\space\space&2&1\\ \space\space&\times \:&1&4\end{matrix}}{\begin{matrix}\space\space&0&8&4\\ \space\space&2&1&0\end{matrix}}

adding portion

\begin{matrix}\space\space&0&8&4\\ +&2&1&0\end{matrix}

Add the digits of the right-most column: 4+0=4

\frac{\begin{matrix}\space\space&0&8&\textbf{4}\\ +&2&1&\textbf{0}\end{matrix}}{\begin{matrix}\space\space&\space\space&\space\space&\textbf{4}\end{matrix}}

Add the digits of the right-most column: 8+1=9

\frac{\begin{matrix}\space\space&0&\textbf{8}&4\\ +&2&\textbf{1}&0\end{matrix}}{\begin{matrix}\space\space&\space\space&\textbf{9}&4\end{matrix}}

Add the digits of the right-most column: 0+2=2

\frac{\begin{matrix}\space\space&\textbf{0}&8&4\\ +&\textbf{2}&1&0\end{matrix}}{\begin{matrix}\space\space&\textbf{2}&9&4\end{matrix}}

Therefore,

\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}

________

\frac{\begin{matrix}\space\space&\textbf{0}&8&4\\ +&\textbf{2}&1&0\end{matrix}}{\begin{matrix}\space\space&\textbf{2}&9&4\end{matrix}}

6 0
3 years ago
Other questions:
  • 3) What is the value of n? *<br> 2n - 36
    10·1 answer
  • Solve and type in a different form by using the given theorems of logarithms. log10 (M/N) =
    11·1 answer
  • Which value of x will make the absolute value equation true? |x| = 8
    15·1 answer
  • Identify the equation of the circle that has its center at (10, 24) and passes through the origin.
    9·1 answer
  • How do you do this I have no idea
    13·2 answers
  • What are the first five common multiples of 8 and 11?
    8·1 answer
  • The concentration of bacteria B in millions per milliliter after x hours is given by B(x)=1.33e^0.15x. After how many hours will
    9·1 answer
  • Collect like terms<br> x+x+x
    14·2 answers
  • Help pls ahdjsjfjdjcjdj
    5·1 answer
  • Paolo is using his grandmother’s cookie recipe. He always doubles the amount of chocolate chips and oats. The recipe calls for 2
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!