Answer:
Option C. Gain 1 electron
Explanation:
Valence electron(s) are the electron(s) located on the outermost shell of an atom. Valency is simply defined as the combining power of an atom.
Chlorine (Cl) atom has 7 valence electron. This implies that Cl needs just one electron to complete it's octet configuration. It will be difficult for Cl to lose any of it's valence electron(s). Cl can either gain or share 1 electron to become stable.
Thus, considering the options given in the question above, option C gives the correct answer to the question.
Answer:
![Ksp=1.07x10^{-8}](https://tex.z-dn.net/?f=Ksp%3D1.07x10%5E%7B-8%7D)
Explanation:
Hello,
In this case, the dissociation reaction is:
![PbI_2(s)\rightleftharpoons Pb^{2+}(aq)+2I^-(aq)](https://tex.z-dn.net/?f=PbI_2%28s%29%5Crightleftharpoons%20Pb%5E%7B2%2B%7D%28aq%29%2B2I%5E-%28aq%29)
For which the equilibrium expression is:
![Ksp=[Pb^{2+}][I^-]^2](https://tex.z-dn.net/?f=Ksp%3D%5BPb%5E%7B2%2B%7D%5D%5BI%5E-%5D%5E2)
Thus, since the saturated solution is 0.064g/100 mL at 20 °C we need to compute the molar solubility by using its molar mass (461.2 g/mol)
![Molar solubility=\frac{0.064g}{100mL}*\frac{1000mL}{1L}*\frac{1mol}{461.2g}=1.39x10^{-3}M](https://tex.z-dn.net/?f=Molar%20solubility%3D%5Cfrac%7B0.064g%7D%7B100mL%7D%2A%5Cfrac%7B1000mL%7D%7B1L%7D%2A%5Cfrac%7B1mol%7D%7B461.2g%7D%3D1.39x10%5E%7B-3%7DM)
In such a way, since the mole ratio between lead (II) iodide to lead (II) and iodide ions is 1:1 and 1:2 respectively, the concentration of each ion turns out:
![[Pb^{2+}]=1.39x10^{-3}M](https://tex.z-dn.net/?f=%5BPb%5E%7B2%2B%7D%5D%3D1.39x10%5E%7B-3%7DM)
![[I^-]=1.39x10^{-3}M*2=2.78x10^{-3}M](https://tex.z-dn.net/?f=%5BI%5E-%5D%3D1.39x10%5E%7B-3%7DM%2A2%3D2.78x10%5E%7B-3%7DM)
Thereby, the solubility product results:
![Ksp=(1.39x10^{-3}M)(2.78x10^{-3}M)^2\\\\Ksp=1.07x10^{-8}](https://tex.z-dn.net/?f=Ksp%3D%281.39x10%5E%7B-3%7DM%29%282.78x10%5E%7B-3%7DM%29%5E2%5C%5C%5C%5CKsp%3D1.07x10%5E%7B-8%7D)
Regards.
Answer:
D. 0.4 (mol/L)/S
Explanation:
You simply have to plug in the given values into the rate law.
Rate = k[A][B]
Rate = (0.1)(1)²(2)²
Rate = (0.1)(1)²(4)²
Rate = 0.4
Answer:
Explanation:
First convert the grams of Calcium Bromide to moles by using the atomic weight. Then use the formula for molarity, which is moles per liter.
CaBr2 = 199.9 g/mol
10/199.9 = 0.05 moles of CaBr2
![0.5M=\frac{0.05mol}{x}](https://tex.z-dn.net/?f=0.5M%3D%5Cfrac%7B0.05mol%7D%7Bx%7D)
x = 0.1L or 100mL
Hello!
<span>We have the following statement data:
</span>
Data:
![P_{Total} = 800 mmHg](https://tex.z-dn.net/?f=%20P_%7BTotal%7D%20%3D%20800%20mmHg)
![P\% N_{2} = 60\%](https://tex.z-dn.net/?f=P%5C%25%20N_%7B2%7D%20%3D%2060%5C%25)
![P\% O_{2} = 40\%](https://tex.z-dn.net/?f=P%5C%25%20O_%7B2%7D%20%3D%2040%5C%25)
![P_{partial} = ? (mmHg)](https://tex.z-dn.net/?f=%20P_%7Bpartial%7D%20%3D%20%3F%20%28mmHg%29)
<span>As the percentage is the mole fraction multiplied by 100:
</span>
![P = X_{ O_{2} }*100](https://tex.z-dn.net/?f=P%20%3D%20%20X_%7B%20O_%7B2%7D%20%7D%2A100)
<span>The mole fraction will be the percentage divided by 100, thus:
</span><span>What is the partial pressure of oxygen in this mixture?
</span>
![X_{ O_{2} } = \frac{P}{100}](https://tex.z-dn.net/?f=%20X_%7B%20O_%7B2%7D%20%7D%20%20%3D%20%20%5Cfrac%7BP%7D%7B100%7D%20%20)
![X_{ O_{2}} = \frac{40}{100}](https://tex.z-dn.net/?f=%20X_%7B%20O_%7B2%7D%7D%20%3D%20%20%5Cfrac%7B40%7D%7B100%7D)
![\boxed{X_{ O_{2}} = 0.4}](https://tex.z-dn.net/?f=%5Cboxed%7BX_%7B%20O_%7B2%7D%7D%20%3D%200.4%7D)
<span>To calculate the partial pressure of the oxygen gas, it is enough to use the formula that involves the pressures (total and partial) and the fraction in quantity of matter:
</span>
In relation to
![O_{2}](https://tex.z-dn.net/?f=O_%7B2%7D)
:
![\frac{P O_{2} }{P_{total}} = X_O_{2}](https://tex.z-dn.net/?f=%20%5Cfrac%7BP%20O_%7B2%7D%20%7D%7BP_%7Btotal%7D%7D%20%3D%20X_O_%7B2%7D%20)
![\frac{P O_{2} }{800} = 0.4](https://tex.z-dn.net/?f=%5Cfrac%7BP%20O_%7B2%7D%20%7D%7B800%7D%20%3D%200.4)
![P_O_{2} = 0.4*800](https://tex.z-dn.net/?f=P_O_%7B2%7D%20%3D%200.4%2A800)
![\boxed{\boxed{P_O_{2} = 320\:mmHg}}\end{array}}\qquad\quad\checkmark](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7BP_O_%7B2%7D%20%3D%20320%5C%3AmmHg%7D%7D%5Cend%7Barray%7D%7D%5Cqquad%5Cquad%5Ccheckmark)
<span>
Answer:
</span><span>
b. 320.0 mm hg </span>