Answer:
D.) Fixed costs do not change no matter how much a business produces; variable costs do change.
Step-by-step explanation:
A variable cost varies with the amount produced, while a fixed cost remains the same no matter how much output a company produces.
I'm 100% sure that this is the answer.
Answerwhat do you nee help with i dont
get itStep-by-step explanation:
Answer:
1 is the answer why because its multiply both side 1
Answer:
Area = 3.3998
Perimeter = 2.9
Step-by-step explanation:
A method for calculating the area of a triangle when you know the lengths of all three sides.
Let a,b,c be the lengths of the sides of a triangle. The area is given by:
Area = √ p ( p − a ) ( p − b ) ( p − c )
where p is half the perimeter, or
a + b + c / 2
p = 1.7 + 1.7 + 2.4 / 2 = 5.8 / 2 = 2.9
a = Area = 3.3998
Heron was one of the great mathematicians of antiquity and came up with this formula sometime in the first century BC, although it may have been known earlier. He also extended it to the area of quadrilaterals and higher-order polygons.
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Distributive Property
<u>Algebra I</u>
- Terms/Coefficients
- Factoring
<u>Calculus</u>
Derivatives
Derivative Notation
Derivative of a constant is 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]: ![\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
y = (3x - 1)⁵(4 - x⁴)⁵
<u>Step 2: Differentiate</u>
- Product Rule:
^5 + (3x - 1)^5\frac{d}{dx}[(4 - x^4)^5]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%283x%20-%201%29%5E5%5D%284%20-%20x%5E4%29%5E5%20%2B%20%283x%20-%201%29%5E5%5Cfrac%7Bd%7D%7Bdx%7D%5B%284%20-%20x%5E4%29%5E5%5D)
- Chain Rule [Basic Power Rule]:
![\displaystyle y' =[5(3x - 1)^{5-1} \cdot \frac{d}{dx}[3x - 1]](4 - x^4)^5 + (3x - 1)^5[5(4 - x^4)^{5-1} \cdot \frac{d}{dx}[(4 - x^4)]]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%5B5%283x%20-%201%29%5E%7B5-1%7D%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5B3x%20-%201%5D%5D%284%20-%20x%5E4%29%5E5%20%2B%20%283x%20-%201%29%5E5%5B5%284%20-%20x%5E4%29%5E%7B5-1%7D%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%284%20-%20x%5E4%29%5D%5D)
- Simplify:
![\displaystyle y' =[5(3x - 1)^4 \cdot \frac{d}{dx}[3x - 1]](4 - x^4)^5 + (3x - 1)^5[5(4 - x^4)^4 \cdot \frac{d}{dx}[(4 - x^4)]]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%5B5%283x%20-%201%29%5E4%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5B3x%20-%201%5D%5D%284%20-%20x%5E4%29%5E5%20%2B%20%283x%20-%201%29%5E5%5B5%284%20-%20x%5E4%29%5E4%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%284%20-%20x%5E4%29%5D%5D)
- Basic Power Rule:
^5 + (3x - 1)^5[5(4 - x^4)^4 \cdot -4x^{4-1}]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%5B5%283x%20-%201%29%5E4%20%5Ccdot%203x%5E%7B1%20-%201%7D%5D%284%20-%20x%5E4%29%5E5%20%2B%20%283x%20-%201%29%5E5%5B5%284%20-%20x%5E4%29%5E4%20%5Ccdot%20-4x%5E%7B4-1%7D%5D)
- Simplify:
^5 + (3x - 1)^5[5(4 - x^4)^4 \cdot -4x^3]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%5B5%283x%20-%201%29%5E4%20%5Ccdot%203%5D%284%20-%20x%5E4%29%5E5%20%2B%20%283x%20-%201%29%5E5%5B5%284%20-%20x%5E4%29%5E4%20%5Ccdot%20-4x%5E3%5D)
- Multiply:

- Factor:
![\displaystyle y' = 5(3x-1)^4(4 - x^4)^4\bigg[ 3(4 - x^4) - 4x^3(3x - 1) \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%205%283x-1%29%5E4%284%20-%20x%5E4%29%5E4%5Cbigg%5B%203%284%20-%20x%5E4%29%20-%204x%5E3%283x%20-%201%29%20%5Cbigg%5D)
- [Distributive Property] Distribute 3:
![\displaystyle y' = 5(3x-1)^4(4 - x^4)^4\bigg[ 12 - 3x^4 - 4x^3(3x - 1) \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%205%283x-1%29%5E4%284%20-%20x%5E4%29%5E4%5Cbigg%5B%2012%20-%203x%5E4%20-%204x%5E3%283x%20-%201%29%20%5Cbigg%5D)
- [Distributive Property] Distribute -4x³:
![\displaystyle y' = 5(3x-1)^4(4 - x^4)^4\bigg[ 12 - 3x^4 - 12x^4 + 4x^3 \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%205%283x-1%29%5E4%284%20-%20x%5E4%29%5E4%5Cbigg%5B%2012%20-%203x%5E4%20-%2012x%5E4%20%2B%204x%5E3%20%5Cbigg%5D)
- [Brackets] Combine like terms:

- Factor:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e